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Introduction

This book, like many things, was developed in response to a problem: There is no text that
explains modern advancements in the field of cryptanalysis. The field of cryptanalysis has
developed significantly in the last several hundred years, and for the most part, cryptanalysis
has been well-studied and documented throughout this time.

However, when we move into the 20th century, the documentation of cryptanalysis has
come to a near standstill. Almost every book published on the topic of “cryptanalysis” is
stuck nearly 100 years in the past, idling around the area of breaking some of the simplest
ciphers, by today’s standards.

The field itself has not stopped developing. On the contrary, it has been moving incredibly
rapidly, especially in the past 30 years, with the rise of ever more powerful computers. While
all of this research into cryptanalysis has been documented and presented at various confer-
ences throughout the world, nobody had bothered to create a simple resource with which
to learn cryptanalysis from scratch. Bruce Schneier [5] stated that such a resource would
not be worthwhile, because the field changes so much, and he has a point. But, the current
roads on which cryptanalysis travels are built on the same foundations, and the amount of
background material needed to understand current research or participate is becoming very
large and complicated. Furthermore, the important papers are written by many different
individuals with many diverse goals and audiences, which can make the papers difficult to
understand.

I must reiterate what Schneier says [5], though: There is only one way to become a good
cryptanalyst — to practice breaking codes. However, it is my hope that this book will be a
good outline of many important topics to a new or veteran cryptanalyst.

While teaching at The University of Tulsa, I had many students express their interest in
learning cryptanalysis, knowing that I enjoyed the field. As I began to prepare to teach a
class, I discovered that there was definitely no textbook for what I wanted to teach, although
I did prepare the students mathematically using the material in Reference [7].

Therefore, I gathered up all of the material I could from various conferences and publica-
tions and hobbled together notes and summaries for the students in the class. I then realized
that there might be a few other people in my situation, wanting to learn the subject on their
own, or possibly even teach or take a class on cryptanalysis with a sparse foundation to build
on. Hopefully, there are, or my publisher will be very disappointed with the sales of this
book.

In order to properly teach modern cryptanalysis, we have to get a few things out of the
way first. For one thing, we need to agree on what it is exactly that we are doing and why,
which is what this Introduction is about. We are going to have to do some review of math in
Chapter 2, although I will leave a more vigorous run-through for other textbooks.

I will then go through some of the older cryptanalysis methods commonly found in other
cryptanalysis books, as well as many computer security books. Then we get to the good stuff.

First, I will briefly cover some aspects of ciphers based on number theory, such as RSA
and Diffie–Hellman. Although these are typically instantiated in such a manner that the
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algorithms I discuss will take too long to actually perform, I will discuss the basic framework
that is used to look at these ciphers.

Then we get into the real core of the book: block ciphers. I start with a brief discussion
of cryptography: how the algorithms themselves are built. Then I start discussing some very
modern but general attacks on block ciphers, such as rainbow tables.

I will then go into linear and differential cryptanalysis, as well as the many methods
derived from them. Nearly all modern cryptanalysis is based on or heavily influenced by
these two concepts, thus a good deal of material will go into fully developing them and
getting into contemporary research. Although this is a book on cryptanalysis, we must first
understand the science behind everything: cryptology. Going even further back, cryptology
is but one weapon to combat a security problem.

Concepts of Security

So what is this “security” thing people always talk about? It’s all over the Internet — security
lapses here, lack of security there, someone loses a laptop full of sensitive identifying in-
formation, a student hacks into another student’s account, or a piece of software on your
computer is allowing someone to take control of it remotely. So what does security mean?

Looking up security in a few dictionaries will give a general consensus that security is
“freedom from danger, risk, and loss” [2, 4]. This is a book related to computers, thus we are
concerned with dangers, risks, and losses related to computers, especially information.

Over the past several years, we have seen or heard of many examples of violations of
security, particularly with the advent of the Internet. Valuable information is often targeted
by criminals, who often seek to steal credit card information, Social Security numbers (for U.S.
citizens), bank accounts, login names, passwords, and corporate data. Other examples are
simply data loss: Improper storage of valuable data can mean that the data is not recoverable
when it is needed.

There are several fundamental cornerstones of information security that it helps to keep
in mind when trying to understand any technique meant to further this concept of keeping
our information free from danger, risk, and loss.

The first principle is confidentiality: keeping our information free from the danger of
being exposed to unauthorized parties. This exposure can be through accidentally or pur-
posefully losing the information, such as by transmitting it via insecure means or by simply
misplacing a briefcase with no lock on it (a lock would provide at least some confidentiality,
since not just anyone would bother to open it). Confidentiality can often be the most critical
element of information: keeping it from prying eyes. Information on national defense and
corporate secrets often places the most emphasis on maintaining confidentiality, since once
data is in the hands of another person, it could be damaging or worthless, making any other
points of security moot. Confidentiality, as in the example above, can be implemented by
locking the information (such as in a briefcase), or perhaps encoding it so that it is gibberish
to anyone who doesn’t know how to decode it.

A second critical property is integrity: keeping our information free from the danger of
being modified by unauthorized parties, and thus being invalid. Even if it is not necessary for
the information to be secret, as with confidentiality, it may be very important that the infor-
mation is correct. For example, an email from your boss may not hold anything particularly
sensitive and could even be sent to the entire workforce, but you need to know for sure that
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nobody but your boss wrote it or modified it before you saw it.
A third property of information security we may wish to protect is its availability: keep-

ing our information around, that is, free from loss. For example, if someone is hosting a
streaming video service for a sporting event, delivering video to every subscriber may be the
most important issue: if a video packet or two is slightly jumbled when it arrives, it is not
usually a very big deal. Mechanisms for availability include redundancy (e.g., power, servers)
and extensive testing before actual use.

What good is our information, even if it is all there, available, and secure, if it was written
by somebody other than we expect? Authenticity is keeping our information written only by
the party that we wish to have written it. Authenticity can also be called verification, and we
see it in every day life constantly. The signature on a written check, watermarks and other
properties of the paper used for currency, ATM cards to access a bank account, PIN numbers
on an ATM card, passwords for bank accounts, and thumbprints for logging in all verify
some property about an object to guarantee its genuineness.

Although some of the other topics are touched on a bit in this book, we are primarily
concerned with the oldest and most prominently placed principle of security in this text:
confidentiality. Specifically, how do we transmit information so that, if it is intercepted, no
one can see what it is without great difficulty? Naturally, we need to modify or garble the
message in some way, but so that the intended recipient can figure out what the original
message was.

Cryptology

As mentioned, the confidential exchange of information is critical in society — from military
orders to credit card numbers, for thousands of years people have had data that must be
protected from unwanted eyes. The science of securely transferring information is known as
cryptology and is usually separated into two distinct yet related sciences: cryptography and
cryptanalysis.

Cryptography is the most commonly encountered area of cryptology, consisting of the sci-
ence of understanding, implementing, and using information obfuscation techniques. These
techniques are called cryptographic algorithms, codes, codebooks, cryptosystems, cryptoal-
gorithms, or ciphers.

Cryptography can be as simple as a code a child might use to hide notes in class — an
understanding with another student that the message is, say, written backwards, character-
by-character. It can also be extremely complex, requiring advanced mathematics just to un-
derstand some of the basic principles, such as in elliptic curve cryptography.

The term encryption refers to taking information that is unobfuscated (the plaintext)
and applying the cipher to acquire obfuscated data (the ciphertext). Taking ciphertext and
deriving the plaintext is called decryption.

Sometimes, algorithms rely on an external (to the plaintext or ciphertext) piece of infor-
mation to guide the encryption and decryption processes. This external piece of information
is often called a key, or cryptovariable.

As a very quick example, we could take a simple word, such as cat, and our cipher could
be to simply transmit each letter by its position in the standard English alphabet (a = 1, b
= 2, etc.). In this case, our message would be (3, 1, 20). We could use a key (say, a small
number) and add this value to each character. Therefore, if our key was the number 5, we
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Cryptology

Crytpography

37 2a 08 73 d1 c4 52 24 

6a 07 ae a3 43 dd f0 71 

ef 8f e4 b8 81 97 09 81

All work and no play ...

Cryptanalysis

37 2a 08 73 d1 c4 52 24 

6a 07 ae a3 43 dd f0 71 

ef 8f e4 b8 81 97 09 81 

97 09 81 a3 6f a4 77 25 

1f 62 79 80 ef 76 bd f9 

73 87 23 4b 61 02 1d cd 

d0 6b ac 5c b2 ed 50 05 

c3 ea dd 44 22 df e8 2c 

41 e1 30 d2 cd 78 5e 2e

All work and no play ...

Figure -1-1 Illustration of the two fundamental areas of cryptology: cryptog-
raphy, how to use ciphers to encrypt and decrypt information, and cryptanlaysis,
how to break ciphers.

would then have the encrypted message (8, 6, 25).
The study of cryptography itself is important: cryptography has many good books cover-

ing how ciphers work and how to properly use them. We are more concerned with how well
these algorithms protect the information with which they are entrusted. Hence, cryptanal-
ysis is the study of defeating and strengthening cryptographic techniques; that is, finding,
exploiting, and correcting weaknesses in either the algorithms themselves or in particular im-
plementations. Understanding cryptanalytic methods helps us break bad ciphers and make
good ones. As you can tell by the title of this book, our primary focus is going to be on
cryptanalysis.

As long as there have been cryptographers, there have been people who have attempted
to cryptanalyze the systems used to protect data. The fact that somebody bothered to protect
the data at all might be an indicator that it is valuable!

A related field, although technically not directly involved with cryptology, is steganogra-
phy. This mostly separate field is concerned with hiding data in other information, usually
without altering the original information. For example, a particularly noisy image file of a
photograph can have many bits changed, producing effects that will be not noticeable (or
negligibly so) to the human eye, but could be interpreted into separate data.

Steganographic and cryptographic techniques can be combined to increase the security
of the data hiding, though. Otherwise, known methods would be fairly easy to defeat: tied
with encryption, the encoded data would look nearly identical to random noise.

Although both cryptography and steganography are fascinating and intricate fields, I
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shall not discuss either in great detail throughout this book. However, principles of steganog-
raphy may be sprinkled throughout to give a more holistic view.

History of Cryptology

As soon the first person realized that it might be desirable to write down a piece of informa-
tion, either for storage or for transportation, and there would be undesirable consequences
should that piece of information be revealed, the challenge of cryptology arose. As people
started to tackle this wide problem, either by figuring out ways to encode information or by
trying to understand others’ encoded information, the field started to develop.

One of the first uses of cryptography, and still one of the most important to date, is
hiding information about military orders: should the courier transporting deployments from
a general in charge of managing a battle to the field commanders fighting it be intercepted
by the enemy on route to the battlefield, the enemy would then know what orders were to be
given if the orders were not protected. This is a confidentiality problem. Furthermore, if the
interceptor realizes that they can intercept the order, might they not replace that order with
an erroneous order that would give the advantage to the enemy? This is an integrity problem,
if the message can be so thwarted. Finally, by simply killing all of the couriers, no orders
will get through, thereby preventing the passage of information from command, creating an
availability problem. When evaluating security problems, it is useful to understand several
properties about the system’s security posture. First, there are threats to a system: events or
entities that can potentially do harm to the security. These can be intentional or unintentional
threats, including natural disasters. An earthquake destroying data is just as total a loss as
an adversary deleting all of the data. Both are considered threats.

A potential ability for harm to come to a system is through a vulnerability. A vulner-
ability is merely an opportunity for harm to occur. For example, leaving your office door
unlocked constitutes a vulnerability in the physical security of your office systems.

An actual risk occurs when threats are combined with vulnerabilities. A threat to your
system that can actually use vulnerabilities to compromise the security of a system creates
a risk. The cost (monetary or otherwise) along with likelihood of these vulnerabilities being
exploited by threats constitutes the degree of a response necessary to counter these risks.

The entire process of risk analysis is beyond the scope of this book, but the concepts can
be easily seen in our military example. In the early days of warfare, the other army might be
nearly or completely illiterate — therefore, having the orders written down at all, even in the
clear, may be a vulnerability, but there is no risk associated since the enemy has no ability to
read the message.

Often, when performing this kind of analysis, it can be useful to create a matrix of the
different vulnerabilities and threats to determine potential problems in the security of a sys-
tem.

Principles of Good Cryptography

Claude Shannon proposed several criteria of good ciphers that are fairly influential in the
development of cryptography [6].

1. The amount of security necessary should dictate how much effort we put into securing or en-
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crypting our data. Essentially, if a piece of information doesn’t need to be protected,
then don’t protect that information. For example, no one would probably go so far as
to encrypt and hide, say, an executable program on a computer used to play solitaire.

2. The size of the ciphertext should be less than or equal to the size of the plaintext. Shannon was
a pioneer of information theory. From an information theory perspective, the plaintext
contains some amount of information encoded into bits. If the ciphertext contains the
same information, but more bits, theoretically there is more room there for us to derive
the original information.

3. The cryptographic system should be simple. A lot of complexity makes lots of room for
errors. AES is a model of simplicity while being extremely robust (see Chapter 4).

As a corollary, the implementation must also be simple. If the algorithm itself is simple,
but the implementation can only be programmed on an incredibly complex machine,
then this can also be undesirable.

Also, the keys themselves shouldn’t be unnecessarily complicated: if the keys rely on
a computationally heavy algorithm for their generation (say, the key must be a prime
greater than 22,000,000) or have arbitrary and strange requirements (say, every other bit
must zero).

4. Errors should not propagate. Essentially, if there is a transmission error when sending an
encrypted message, accidentally leaving out a bit, or getting some part of the message
wrong, then that error should have as limited an impact as possible. This principle is
a little less relevant nowadays than it was in 1949 as communications methods have
become more robust and the use of error detection and correction has accelerated.
Furthermore, this principle is difficult and conflicts a bit with the concept of diffusion:
If errors never propagate, then there isn’t enough entropy in the cipher, and this might
lead to a line of attack.

These principles are not fast and hard, but merely guidelines. Even the author disagrees
with the first principle to a certain extent. For example, many people now have document
shredders so that they can shred certain documents before throwing them away, in hopes of
deterring potential identity thieves. The author is of the opinion that for every real treasure
trove of personal information shredded (e.g., a document with a Social Security number or a
bank account number on it), then at least one piece of absolute garbage information should
be shredded. The idea is to significantly increase the difficulty in recovering any potentially
important documents.

A similar argument can be made toward the storage of sensitive information, in conflict
with Shannon’s first principle. If all information is regularly stored with very strong encryp-
tion (all using different keys), then, with any luck, anyone attempting to get access to the
original information will have to work harder.

There are a few additional principles that often crop up in discussions of security. For
example, there is often the phrase “security through obscurity,” applied when using an en-
cryption method that is not publicly known. These ciphers are sometimes known as black
box ciphers, since we don’t know what is going on in them. In general, security through
obscurity is frowned upon: although there is some sense of security in knowing that few
people know how a particular system is implemented, it is possible that, without enough
people evaluating the system, there will be undiscovered errors in the algorithm. This lesson
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was learned well with the selection of the Advanced Encryption Standard, where every can-
didate cryptoalgorithm underwent numerous public evaluations before being selected as the
standard.

Conventions Used in This Book

Throughout this book, I will use several distinctive text markings regularly. First, words that
are in bold are important words that are being defined — they represent key concepts of the
chapter they are in. Emphasized words are in italics.

In some of the beginning chapters, I indicate unencrypted text (plaintext) in lowercase,
in a fixed-width font. For encrypted text (ciphertext), I put the text in UPPERCASE,
IN A FIXED-WIDTH FONT.

Fixed-width fonts are also used to indicate hexadecimal numbers, separated on a byte or
larger grouping. For example, the number AA BB (or aa bb) represents the number 43,707
(in decimal). Source code is put into listings in a fixed-width font as well.

Mathematical expressions and variables are in italics, such as f (x) = x2.

Book Contents

This book is composed of the following chapters, some of which can be skipped, depending
on your interests.

Chapter 1 presents some of the classic ideas of cryptography and cryptanalysis. It explains
some of the simpler systems of cryptography and how they were broken.

In Chapter 2, I discuss some of the mathematics necessary for understanding more ad-
vanced cryptanalysis. Topics in probability theory, number theory, and algebra are covered in
a fast-paced manner. The probability theory is mandatory for students studying cryptanaly-
sis, but the more mathematical parts of number theory and algebra can be safely skipped by
students more interested in block cipher analysis, rather than number theoretic ciphers.

Chapter 3 covers number theoretic and algebraic cipher techniques and focuses on some
explanations for common cryptanalytic techniques.

Chapter 4 introduces many of the concepts used in building modern block ciphers, such
as Feistel structures, substitution-permutation networks, and shift registers.

Chapter 5 gives some background into some of the more general-purpose cryptanalytic
techniques, various “brute-force” techniques, complexity theory, and rainbow tables.

Chapter 6 is where some of the modern, advanced techniques come into play, including
linear and multilinear cryptanalysis, and some of its derivative work and results.

Chapter 7 finally delves into differential cryptanalysis, including its descendants.
Students interested mostly in cryptography and basic cryptanalysis should be concerned

with Chapters 1 and 4, as well as some of Chapters 2 and 5. Although this book is by no means
an exhaustive covering of some of the more mathematical techniques, a good feel for them
can be obtained in Chapters 2 and 3 (see, for example, References [1], [3], and [7] for more
coverage, for starters). Block cipher enthusiasts should study everything, though, saving
possibly Chapter 2 (except probability theory) and Chapter 3, for the less mathematically
inclined.
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CHAPTER

1
Simple Ciphers

As long as there has been communication, there has been an interest in keeping some of this
information confidential. As written messages became more widespread, especially over dis-
tances, people learned how susceptible this particular medium is to being somehow compro-
mised: the messages can be easily intercepted, read, destroyed, or modified. Some protective
methods were employed, such as sealing a message with a wax seal, which serves to show
the communicating parties that the message is genuine and had not been intercepted. This,
however, did nothing to actually conceal the contents.

This chapter explores some of the simplest methods for obfuscating the contents of com-
munications. Any piece of written communication has some set of symbols that constitute
allowed constructs, typically words, syllables, or other meaningful ideas. Some of the simple
methods first used involve simply manipulating this symbol set, which the cryptologic com-
munity often calls an alphabet regardless of the origin of the language. Other older tricks
involved jumbling up the ordering of the presentation of these symbols. Many of these tech-
niques were in regular use up until a little more than a century ago; it is interesting to note
that even though these techniques aren’t sophisticated, newspapers often publish puzzles
called cryptograms or cryptoquips employing these cryptographic techniques for readers to
solve.

Many books have been published that cover the use, history, and cryptanalysis of simple
substitution and transposition ciphers, which we discuss in this chapter. (For example, some
of the resources for this chapter are References [2] and [4].) This chapter is not meant to
replace a rigorous study of these techniques, such as is contained in many of these books,
but merely to expose the reader to the contrast between older methods of cryptanalysis and
newer methods.

1.1 Monoalphabetic Ciphers

It’s certain that, as long as people have been writing, people have been using codes to com-
municate — some form of writing known only to the communicating parties. For example,
the two people writing each other secret letters might agree to write the first letter of each
word last, or to exchange some letters for alternate symbols. Even many children experiment
with systems and games of writing based on similar ideas.

The most basic kind of cipher is one in which a piece of text is replaced with another —
these are called substitution ciphers. These can be single-letter substitutions, in which each
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letter in each word is exchanged one at a time, or whole-block substitutions, in which whole
blocks of text or data are exchanged for other whole blocks (block ciphers, which are dis-
cussed in detail in Chapter 4).

One family of simple substitution ciphers related to the above is the family of monoalpha-
betic ciphers — ciphers that take the original message and encrypt it, one letter (or symbol)
at a time, using only a single new alphabet to replace the old. This means that each character
is encrypted independently of the previous letter, following the same rule. Since these rules
must always translate a character in the same way every time, a rule can be represented as
a new alphabet, so that a message can be encrypted via a conversion table between the two
alphabets.

The simplest example of a monoalphabetic cipher is to perform a single shift on the
alphabets. In other words, replace all a’s with b’s, b’s with c’s, and so forth, and wrap
around the end so that z’s are replaced with a’s. This means that the word cat would be
encrypted as DBU, and the word EPH would be decrypted as dog.

One of the first, and certainly the most widely known, monoalphabetic ciphers was one
used by ancient Romans. It is affectionately called the Caesar cipher after the most famous of
Romans [4]. This system was reportedly used to encrypt battle orders at a time when having
the orders written at all was almost good enough to hide them from the average soldier, and
it is extraordinarily simple. To obtain the ciphertext for a plaintext using the Caesar cipher,
it is necessary simply to exchange each character in the plaintext with the corresponding
character that occurs three characters later in the common order of the alphabet (so that a
encrypts to D, b encrypts to E, etc., and wrapping around, so that x encrypts to A).

Naturally, getting the plaintext back from the ciphertext is simply a matter of taking each
character and replacing it with the character that appears three characters before it in the
common order of the alphabet (see Table 1-1).

Table 1-1 Caesar Cipher Lookup Table

Plaintext↔ Ciphertext

a ↔ d h ↔ k o ↔ r v ↔ y
b ↔ e i ↔ l p ↔ s w ↔ z
c ↔ f j ↔ m q ↔ t x ↔ a
d ↔ g k ↔ n r ↔ u y ↔ b
e ↔ h l ↔ o s ↔ v z ↔ c
f ↔ i m ↔ p t ↔ w
g ↔ j n ↔ q u ↔ x

For example, the text retreat would be encoded as UHWUHDW.
To decrypt a message, simply reverse the table so that d→ a, e→ b, and so on.
As a quick example, the text

the quick brown fox jumps over the lazy dog

can be easily encrypted by shifting each character three to the right to obtain

WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ
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However, as any person experienced in newspaper crypto-puzzles can tell you, one of the
key features to breaking these codes is found in the placement of the spaces: if we know how
many letters are in each word, it will help us significantly in guessing and figuring out what
the original message is. This is one simple cryptanalytic piece of knowledge we can use right
away — we are not encrypting the spaces! There are two solutions: we can either encrypt the
spaces as an additional “27-th” letter, which isn’t a terrible idea, or remove spaces altogether.
It turns out that it makes slightly more sense, cryptanalytically speaking, to remove the spaces
altogether. This does make it hard to read and write these codes by hand, thus we often just
remove the spaces but add in new ones at regular intervals (say, every four or five characters),
giving us ciphertext such as

WKHTX LFNEU RZQIR AMXPS VRYHU WKHOD CBGRJ

When encrypted, the lack of the correct spaces in the ciphertext means nothing to either
party. After decryption, though, when the party has plaintext with few spaces in the correct
place, the inconvenience is usually minor, as most people can read the message anyway. The
added security of removing all spaces from the plaintext before encryption is worth the small
added difficulty in reading the message. The spaces added at regular intervals add no new
information to the data stream and are therefore safe to keep.

With these examples, it is easier to see exactly what is meant by the term monoalphabetic.
Essentially, to use a monoalphabetic cipher, we only need to consult a single lookup table. This
will contrast shortly with other techniques, which consult multiple tables.

1.2 Keying

The Caesar cipher has a prominent flaw: anyone who knows the cipher can immediately
decrypt the message. This was not a concern to Caesar 2,000 years ago, as having the message
in writing often provided sufficient subterfuge, considering the high illiteracy of the general
population. However, the simplicity of the cipher allowed field commanders to be able to
send and receive encrypted messages with relative ease, knowing that even if a message was
intercepted and the enemy was literate, the opposition would have little hope of discovering
the content.

As time progressed, more people became aware of the algorithm, and its security was
therefore lessened. However, a natural evolution of the Caesar cipher is to change the way
the letters are transformed into other letters, by using a different ordering of the alphabet.

But easily communicating an alphabet between two parties is not necessarily so easy.
There are 26! = 403,291,461,126,605,635,584,000,000 different possible arrangements of a stan-
dard 26-letter alphabet, meaning that both sides would need to know the encrypting alphabet
that the other was using in order to decrypt the message. If the two parties first agree on an
alphabet as a key, then, since they both know the algorithm, either can send messages that
the other can receive. However, if they number the alphabets individually, they would have
an 89-bit key (since 26! ≈ 288), which is difficult to work with. Instead, most cryptographers
would typically use a few simple transformations to the alphabet, and have a much smaller
key.

For example, the most common method is simply to shift the letters of the output alphabet
to the right or left by a certain number of positions. In this way, the Caesar cipher can be
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viewed as having a shift of +3. There are then 26 different keys possible, and it should be
fairly easy for two parties to exchange such keys. Moreover, such a short key would also be
easy to remember.

Other common transformations are typically a combination of the shifting operation
above and another simple operation, such as reversing the order of the output alphabet [4].

1.2.1 Keyed Alphabets
To increase the number of alphabets available for easy use, a popular keying method is to
use a keyword, such as swordfish, to generate an alphabet. An alphabet can be derived,
for example, by removing the letters in the keyword from the alphabet, and appending this
modified alphabet to the end of the keyword. Thus, the alphabet generated by swordfish
would be

swordfihabcegjklmnpqtuvxyz

Note that the second s was removed from the keyword in the alphabet and that the alphabet
is still 26 characters in length.

There are a few disadvantages to using such a technique. For example, encrypting a mes-
sage that contains the keyword itself will encrypt the keyword as a string of letters starting
something along the lines of ABCDEFGH. Another, probably more severe disadvantage is that
letters near the end of the alphabet will not be shifted at all unless the keyword has one
or more characters appearing at the end of the alphabet, and even so, would then likely be
shifted very little. This provides patterns for the experienced code breaker.

1.2.2 ROT13
A modern example of a monoalphabetic cipher is ROT13, which is still used on the Internet,
although not as much as it has been historically. Essentially, this is a simple cipher in the
style of the Caesar cipher with a shift of +13.

The beauty of this cipher is in its simplicity: the encryption and decryption operations
are identical. This fact is simply because there are 26 letters in the Latin alphabet (at least, the
way we use it in English), thus shifting twice by 13 yields one shift of 26, which puts things
back the way they were. Also note that it doesn’t matter in which “direction” we shift, since
shifting left by 13 and shifting right by 13 always yield the same results.

But why use such an easy-to-break cipher? It’s, in fact, trivial to break since everyone
knows the cipher alphabet! Despite the fact that this style of cipher has been obsolete for
centuries, ROT13 is useful to protect slightly sensitive discussions. For example, readers of
a message board might discuss the endings of books using ROT13 to prevent spoiling the
conclusion for others.

Looking through articles or posts on the Internet where sensitive topics might be dis-
played, and suddenly having the conversation turn into strange-looking garbage text in the
middle (often with other parties replying in the exact same code) often means that the posters
are writing in ROT13. Plus, ROT13 often has a very distinctive look that one can recognize
after a while. For example, our standard text from above,

the quick brown fox jumps over the lazy dog

would display as
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GUR DHVPX OEBJA SBK WHZCF BIRE GUR YNML QBT

when encrypted with ROT13.

1.2.3 Klingon
I would like to delve into a language other than English for a moment, to show that these
these cryptographic (and later, cryptanalytic) techniques are not reliant on English, but can
have similar properties in other languages as well, including even constructed languages. An
example language that might be easy to follow is the Klingon language.

Klingon [1] (more properly, “tlhIngan Hol”), as seen in the Star Trek films and television
shows, is an artificial language invented mostly by Marc Okrand using only common Latin
characters and punctuation. This allows the use of encryption techniques similar to the ones
we have used in English so far, showing some different properties of the language.

Table 1-2 Sounds of tlhIngan Hol [1]

b ch D gh H
j l m n ng
p q Q r S
t tlh v w y
’ a e I o
u

Table 1-2 shows all of the characters of tlhIngan Hol as they are commonly spelled in the
Latin alphabet. From this table, we can then determine that the 25 characters, abcDeghHIjlmnopqQrStuvwy’,
are the only ones we should be seeing and therefore need to encrypt (note that English has
52 characters, if you include capital letters).

Using the character ordering of the previous paragraph, we can perform a ROT13 of the
Klingon text:

Heghlu’meH QaQ jajvam

(In English, this translates as “Today is a good day to die.”)
After the ROT13, we obtain the enciphered text:

trStyIn’rt DoD wowjo’

1.3 Polyalphabetic Ciphers

We can naturally think of several ways to make the monoalphabetic cipher a more powerful
encryption scheme without increasing its complexity too much. For example, why not use
two different ciphers, and switch off every other letter? Or use three? Or more?

This would be an example of a polyalphabetic cipher. These began to be widely adopted
over the past 500 years or so owing to the increasing awareness of how weak monoalphabetic
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ciphers truly are. There are a few difficulties in managing the alphabets. A key must be used
to select different alphabets to encrypt the plaintext.

However, this necessitates an increase in key complexity. If a key represents some set of
k alphabets, then there are (26!)k different sets of alphabets that could be chosen. (This is 26
factorial to the k-th power. In other words, take the number 26 and multiply it by 25, 24, and
so on down to 2, and take that number, and multiply it by itself k times. With k = 1, this is
about four hundred million billion billion, or a 4 followed by 23 zeros. The number of zeros
roughly doubles with each increment of k.) To reduce this number, cryptographers often use
a small number of alphabets based on easily remembered constructions (such as shifts and
reversals of the normal alphabetic ordering), and use parts of the key to select alphabets used
for substitution.

1.3.1 Vigenère Tableau
The most common table used to select alphabets is the famous Vigenère Tableau, as shown
in Table 1-3. The Vigenère Tableau is a pre-selected set of alphabets, along with some guides
to help encrypt and decrypt text characters if you know the key. When using the Viginère
Tableau to select alphabets for a polyalphabetic cipher, we obtain the Viginère cipher. For this
polyalphabetic cipher, the key is a word in the alphabet itself.

Table 1-3 The Vigenère Tableau

a b c d e f g h i j k l m n o p q r s t u v w x y z

a a b c d e f g h i j k l m n o p q r s t u v w x y z
b b c d e f g h i j k l m n o p q r s t u v w x y z a
c c d e f g h i j k l m n o p q r s t u v w x y z a b
d d e f g h i j k l m n o p q r s t u v w x y z a b c
e e f g h i j k l m n o p q r s t u v w x y z a b c d
f f g h i j k l m n o p q r s t u v w x y z a b c d e
g g h i j k l m n o p q r s t u v w x y z a b c d e f
h h i j k l m n o p q r s t u v w x y z a b c d e f g
i i j k l m n o p q r s t u v w x y z a b c d e f g h
j j k l m n o p q r s t u v w x y z a b c d e f g h i
k k l m n o p q r s t u v w x y z a b c d e f g h i j
l l m n o p q r s t u v w x y z a b c d e f g h i j k
m m n o p q r s t u v w x y z a b c d e f g h i j k l
n n o p q r s t u v w x y z a b c d e f g h i j k l m
o o p q r s t u v w x y z a b c d e f g h i j k l m n
p p q r s t u v w x y z a b c d e f g h i j k l m n o
q q r s t u v w x y z a b c d e f g h i j k l m n o p
r r s t u v w x y z a b c d e f g h i j k l m n o p q
s s t u v w x y z a b c d e f g h i j k l m n o p q r
t t u v w x y z a b c d e f g h i j k l m n o p q r s
u u v w x y z a b c d e f g h i j k l m n o p q r s t
v v w x y z a b c d e f g h i j k l m n o p q r s t u
w w x y z a b c d e f g h i j k l m n o p q r s t u v
x x y z a b c d e f g h i j k l m n o p q r s t u v w
y y z a b c d e f g h i j k l m n o p q r s t u v w x
z z a b c d e f g h i j k l m n o p q r s t u v w x y

Encrypting a message using the Vigenère Tableau is fairly easy. We need to choose a
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keyword, preferably of short length to make it easy to remember which alphabet we are
using at every point in the message. We then take our message and encrypt it character by
character using the table and the current character of the keyword (start with the first of each).
We merely look up the current character of the keyword in the left column of the Tableau.

To show an example, we can use our favorite phrase:

the quick brown fox jumps over the lazy dog

We then encrypt it with the key caesar to obtain the ciphertext:

VHI IUZEK FJONP FSP JLOPW GVVT TLW LRBY HGG

1.4 Transposition Ciphers

The preceding encryption mechanisms are all substitution ciphers, in which the primary
operation is to replace each input character, in place, with some other character in a reversible
way. Another general class of ciphers mentioned briefly above is transposition ciphers (or
permutation ciphers), in which instead of characters being substituted for different ones, they
are shuffled around without changing the actual characters themselves. This preserves the
actual contents of the characters but changes the order in which they appear. For example,
one of the simplest transposition ciphers is simply to reverse the characters in the string —
cryptology becomes YGOLOTPYRC.

In order for a transposition cipher to be secure, its encryption mechanism can’t be so
obvious and simple as merely reversing the string, since even an amateur eye can easily see
what is happening. In the following sections, we explore some of the more popular and
effective methods of implementing transposition ciphers.

1.4.1 Columnar Transpositions
Probably the most common, simple transposition cryptographic method is the columnar
transposition cipher. A columnar transposition works in the following way: we write the
characters of the plaintext in the normal way to fill up a line of a rectangle, where the row
length is referred to as k; after each line is filled up, we write the following line directly
underneath it with the characters lining up perfectly; to obtain the ciphertext, we should read
the text from top to bottom, left to right. (Often, spaces can be removed from the plaintext
before processing.)

For example, to compute the ciphertext of the plaintext all work and no play makes
johnny a dull boy with k = 6, write the message in a grid with six columns:

a l l w o r
k a n d n o
p l a y m a
k e s j o h
n n y a d u
l l b o y

Now, reading from the first column, top to bottom, then the second column, and so forth,
yields the following message. Spaces are added for clarity.
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AKPKNL LALENL LNASYB WDYJAO ONMODY ROAHU

To decrypt such a message, one needs to know the number of characters in a column.
Decryption is then just writing the characters in the same order that we read them to obtain
the ciphertext, followed by reading the text left to right, top to bottom.

The key can then be viewed as the integer k, the number of columns. From this, we can
calculate the number of rows (r) by dividing the message length by k and rounding up.

1.4.2 Double Columnar Transpositions
It does not take an advanced cryptanalyst to see an immediate problem with the above colum-
nar transposition cipher — we can easily guess the number of columns (since it is probably a
low number for human-transformable messages), or just enumerate all possibilities for k and
then check to see if any words are formed by taking characters that are k.

To protect messages more without increasing the complexity of the algorithm too much,
it is possible to use two columnar transpositions, one right after the other. We simply take
the resulting ciphertext from the single columnar transposition above and run it through the
columnar transposition again with a different value of k. We refer to these values now as k1
and k2.

For example, if we take the encrypted string, shown earlier, from all work and no
play makes johnny a dull boy, encrypt it with k = 6 (as above, obtaining the cipher-
text from the previous section), and encrypt it again with k2 = 8, we get:

ALYOA KEBNH PNWMU KLDON LYDLN JYLAA RASOO

To show how jumbled things get quite easily, we will take the plaintext P to be the alpha-
bet:

abcde fghij klmno pqrst uvwxy z

Encrypting with k1 = 5, we get the ciphertext C1:

AFKPU ZBGLQ VCHMR WDINS XEJOT Y

And we encrypt the ciphertext C1 with k2 = 9 to obtain the next and final ciphertext C2:

AQNFV SKCXP HEUMJ ZROBW TGDYL I

1.5 Cryptanalysis

In the previous sections, we explored the evolution of several simple cryptographic systems,
many of which were used up until the previous century (and some still find limited use, such
as ROT13). Now we will discuss the weaknesses in the above methods and how to defeat
these codes.

1.5.1 Breaking Monoalphabetic Ciphers
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The first topic we covered was monoalphabetic ciphers. These simple ciphers have several
weaknesses, a few of which were alluded to previously. There are a few important tools
and techniques that are commonly used in the evaluation and breaking of monoalphabetic
ciphers, which we explore in the following sections.

1.5.1.1 Frequency Analysis
The most obvious method is called frequency analysis — counting how often individual let-
ters appear in the text.

Frequency analysis is based on patterns that have evolved within the language over time.
Most speakers of English know that certain letters occur more often than others. For example,
any vowel occurs more often than X or Z in normal writing. Every language has similar
character properties like this, which we can use to our advantage when analyzing texts.

How? We simply run a counter over every character in the text and compare it to known
samples of the language. For the case of frequency analysis, monoalphabetic ciphers should
preserve the distribution of the frequencies, but will not preserve the matching of those relative
frequencies to the appropriate letters. This is how these ciphers are often broken: trying to
match the appropriate characters of a certain frequency in the underlying language to a
similarly acting character in the ciphertext. However, not all ciphers preserve these kinds of
characteristics of the origin language in the ciphertext.

A distribution of English is shown in Figure 1-1, which is derived from The Complete Works
of William Shakespeare. The graph shows the frequency of each character in the Latin alphabet
(ignoring case) in The Complete Works of William Shakespeare [3].

Each language has a unique footprint, as certain letters are used more than others. Again,
in Table 1-1, we can see a large peak corresponding to the letter E (as most people know, E is
the most common letter in English). Similarly, there are large peaks in the graph around the
letters R, S, and T.

For monoalphabetic substitution ciphers, the graph will be mixed around, but the fre-
quencies will still be there: we would still expect to see a large peak, which will probably
be the ciphertext letter corresponding to E. The next highest occurring letters will probably
correspond to other high-frequency letters in English.

Frequency distributions increase in utility the more ciphertext we get. Trying to analyze
a five-letter word will have practically no information for us to derive any information about
frequencies, whereas several paragraphs or more will give us more information to derive a
frequency distribution.

Note, however, that just as frequency distributions are unique to languages, they can
also be unique to particular samples of languages. Figure 1-2 shows a frequency analysis of
the Linux kernel source code that has a different look to it, although it shares some similar
characteristics.

1.5.1.2 Index of Coincidence
One of the first questions we might ask is if a particular message is encrypted at all. And, if
it is encrypted, how is it encrypted? Based on our discussion above about the different kinds
of cryptography, we would want to know whether the message was encrypted with a mono-
or polyalphabetic cipher so that we can begin to find out the key.

We can begin with the index of coincidence (the IC), a very useful tool that gives us
some information about the suspect ciphertext. It measures how often characters could the-
oretically appear next to each other, based on the frequency analysis of the text. You can
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Figure 1-1 Frequency distribution table for Shakespeare’s complete works [3].
The letters are shown left to right, A through Z, with the y-value being the fre-
quency of that character occurring in The Complete Works of William Shakespeare
[3].

think about it as a measure of how evenly distributed the character frequencies are within
the frequency distribution table — the lower the number, the more evenly distributed. For
example, in unencrypted English, we know that letters such as E and S appear more often
than X and Z. If a monoalphabetic cipher is used to encrypt the plaintext, then the individual
letter frequencies will be preserved, although mapped to a different letter. Luckily, the IC is
calculated so that the actual character does not matter, and instead is based on the ratio of
the number of times the character appears to the total number of characters.

The index of coincidence is calculated by the following:

IC = ∑
c ∈ alphabet

count(c)× [count(c)− 1]
length× (length− 1)

This means that we take each character in the alphabet, take the number of them that appear
in the text, multiply by that same number minus one, and divide by the ciphertext length
times the ciphertext length minus one. When we add all of these values together, we will
have calculated the probability that two characters in the ciphertext could, theoretically, be
repeated in succession.

How do polyalphabetic ciphers factor into this? In this case, the same letter will not
be encrypted with the same alphabet, meaning that many of the letter appearances will
be distributed to other letters in a rather random fashion, which starts to flatten out the
frequency distribution. As the frequency distribution becomes flatter, the IC becomes smaller,
since the amount of information about the frequencies is decreasing.
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Figure 1-2 Frequency distribution table for “vanilla” Linux 2.6.15.1 source code
(including only alphabetic characters). The total size is approximately 205
megabytes.

An adequate representation of the English language is The Complete Works of William Shake-
speare [3]. We can easily calculate the index of coincidence, ignoring punctuation and spaces,
by counting the occurrences of each character and applying the above formula. In this case,
we calculate it to be approximately 0.0639.

While Shakespeare provides an interesting reference point and is fairly representative of
English, it is necessary to consider the source of the message you are analyzing. For example,
if your source text likely is C code, a better reference might be a large collection of C code,
such as the Linux kernel. The Linux 2.6.15.1 kernel has an IC ≈ 0.0585. Or, if the text is in
Klingon, we can take a sample size of Klingon with a few English loan words (taken from
about 156 kilobytes of the Qo’noS Qonos), and find the IC ≈ 0.0496.

The theoretically perfect IC is if all characters occurred the exact same number of times
so that none was more likely than any other to be repeated. This can be easily calculated.
For English, since we have 26 characters in our Latin-based alphabet, the perfect (minimum)
value would be that each character occurs exactly 1/26-th of the time. This means that, in the
above equation, we can assume that length = 26× count(c) for all c.

This gives us the following formula to calculate the perfect theoretical minimum. We can
assume that the count is n, to make the formula easier to read. To see what happens as we
get more and more ciphertext, the counts will be more precise; therefore, we will assume that
the amount of ciphertext is approaching an infinite amount.

IC = lim
n→∞ ∑

c ∈ alphabet

n(n− 1)
26n(26n− 1)
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We can simplify this a little (since we know that each part of the sum is always the same):

IC = lim
n→∞

26n(n− 1)
26n(26n− 1)

And we can even simplify a little further:

IC = lim
n→∞

n− 1
26n− 1

Most calculus courses teach L’Hôpital’s Rule, which tells us that the above limit can be
simplified again, giving our theoretical best:

IC = 1/26 ≈ 0.3846

This can be seen intuitively by the fact that, as n gets very large, the subtraction of the
constant 1 means very little to the value of the fraction, which is dominated by the n/26n
part. This is simplified to 1/26.

Note that this technique does not allow us to actually break a cipher. This is simply a tool
to provide us more information about the text with which we are dealing.

1.5.1.3 Other Issues
There are some proposed methods of strengthening basic ciphers (monoalphabetic, polyal-
phabetic, transposition, or others). See Reference [5] for some of these examples.

One very simple method is to throw meaningless characters called nulls into the cipher-
text. For example, the character X does not appear very often in texts. Therefore, we could
just throw in the letter X randomly into the plaintext before encrypting. This technique isn’t
terribly difficult to spot: frequency analysis will show a fairly normal distribution of char-
acters, except for an extra, large spike in the distribution. Once any suspected nulls are
removed, the analysis should be easier. Another common null is to remove spaces from the
plaintext and add them to the ciphertext in a random, English-like manner.

Another popular mechanism is to use monophones — where one plaintext letter can be
represented by more than one ciphertext letter. They can be chosen randomly or with some
certain pattern. This is slightly more difficult to detect, since it will have the property of
flattening the distribution a bit more. Since using monophones quickly depletes the normal
alphabet, extra symbols can often be introduced.

The opposite of a monophone is a polyphone — where multiple plaintext characters are
encoded to the same ciphertext character. This requires the receiver to know this is happening
and be a bit clever about decrypting the message, since there may be multiple interpretations
of the characters.

There are no good ways of automatically detecting and removing these security mea-
sures — a lot of them will involve a human using the preceding and following tools, along
with practice, and simply trying out different ideas.

1.5.2 Breaking Polyalphabetic Ciphers
The key to breaking a polyalphabetic cipher of a keyed type (such as Vigenère) is to look for
certain patterns in the ciphertext, which might let us guess at the key length. Once we have
a good guess for the key length, it is possible to break the polyalphabetic ciphertext into a
smaller set of monoalphabetic ciphertexts (as many ciphertexts as the number of characters in
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Table 1-4 Relationship between Key Length of a Polyalphabetic Cipher and the
Resulting Index of Coincidence of the Ciphertext in The Complete Works of William
Shakespeare [3]

Key Length Approximate IC

1 0.0639
2 0.0511
3 0.0468
4 0.0446
5 0.0438
6 0.0426
7 0.0423
8 0.0417
9 0.0412
10 0.0410
· · · · · ·
∞ 0.0384

the key), each a subset of the original ciphertext. Then, the above methods, such as frequency
analysis, can be used to derive the key for each alphabet.

The question is, how do we guess at the key length? There are two primary methods: the
first is a tool we described above — the index of coincidence.

As stated above, the index of coincidence is the probability of having repeated characters
and is a property of the underlying language. After a text has been run through a monoalpha-
betic cipher, this number is unchanged. Polyalphabetic ciphers break this pattern by never
encrypting repeated plaintext characters to be the same character in the ciphertext. But the in-
dex of coincidence can still be used here — it turns out that although the ciphers eliminate the
appearance of repeated characters in the plaintext being translated directly into the cipher-
text, there will still be double characters occurring at certain points. Ideally (at least from the
point of view of the person whose messages are being cracked), the index of coincidence will
be no better than random (0.03846). But, luckily (from the viewpoint of the cryptanalyst), the
underlying language’s non-randomness comes to the rescue, which will force it into having
a non-perfect distribution of the repeated characters.

Just as longer keys for polyalphabetic ciphers tend to flatten out the frequency distribu-
tions, they also flatten out the non-random measurements, such as the index of coincidence.
Hence, a smaller key will result in a higher index of coincidence, while a longer key gives us
an index of coincidence closer to 0.03846. Table 1-4 shows us the relationship between the
number of characters in the key and the index of coincidence.

As can be seen, the measurement starts to get pretty fuzzy with key lengths of around
six or so characters. Without a great deal of ciphertext, it becomes very difficult to tell the
difference between a polyalphabetic key length of six and seven, even.

We clearly cannot rely completely on the IC then for determining the key length, especially
for smaller amounts of ciphertext (since it is only effective with large amounts of text, and
not very precise for larger keys). Luckily, we have another method for guessing at the likely
key length.
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Friedrich Kasiski discovered that there is another pattern that can be seen, similar to the
index of coincidence [4]. In English, for example, the is a very common word. We would,
therefore, assume that it will be encrypted multiple times in a given ciphertext. Given that
we have a key length of n, we can hope that we will have the word the encrypted at least
n + 1 times in a given ciphertext. Given that it is encrypted at least that many times, we will
be guaranteed to have it be encrypted to the exact same ciphertext at least twice, since there
are only n different positions that the can be aligned to with regard to the key.

We know that we can expect there to be repetitions of certain strings of characters of any
common patterns (e.g., any common trigraphs). But what does this reveal about the key?
This will actually give us several clues about the length of the key.

If we are very certain that two repetitions of ciphertext represent the exact same plaintext
being encrypted with the same pieces of the key, and we know that the key is repeated (such
as in Vigenère) over and over again, this means that it must be repeated over and over again
in between those two pieces of ciphertext. Furthermore, it means that they were repeated an
integral number of times (so that it was repeated 15 or 16 times, but not 14.5). Therefore,
we calculate the difference in the positions of the two pieces of ciphertext, and we know that
this must be a multiple of the length of the ciphertext. Given several of these repetitions, and
several known multiples of the length of the cipher key, we can start to hone in on the exact
length of the key.

A good example may help clear up what is going on. The following plaintext is from the
prologue to Romeo and Juliet [3]:

twoho useho ldsbo thali keind ignit yinfa irver
onawh erewe layou rscen efrom ancie ntgru dgebr
eakto newmu tinyw herec ivilb loodm akesc ivilh
andsu nclea nfrom forth thefa tallo insof these
twofo esapa irofs tarcr ossdl overs taket heirl

We can encrypt this using the key romeo (the key in this case has length 5), to obtain the
following ciphertext:

KKALC LGQLC CREFC KVMPW BSURR ZUZMH PWZJO ZFHIF
FBMAV VFQAS COKSI IGOIB VTDSA RBOMS EHSVI UUQFF
VOWXC ESIQI KWZCK YSDIQ ZJUPP CCAHA RYQWQ ZJUPV
RBPWI EQXIO ETDSA WCDXV KVQJO KOXPC ZBEST KVQWS
KKAJC VGMTO ZFAJG KODGF FGEHZ FJQVG KOWIH YSUVZ

These repetitions occur at the paired positions:

(0, 160), (34, 169), (61, 131), (99, 114), (140, 155), (174, 189)

This corresponds to differences of 160, 135, 70, 15, 15, and 15. We can factor these, giving
us 160 = 2× 2× 2× 2× 2× 5, 135 = 3× 3× 3× 5, 70 = 2× 5× 7, and 15 = 3× 5.

The only common factor of all of them is 5. Furthermore, the sequence with difference 15
occurs many times (once with five-character repetition), and 70 occurs with a four-character
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Table 1-5 Most Common Digraphs and Trigraphs in The Complete Works of
William Shakespeare [3]

Digraph Probability

th 3.16%
he 2.28%
an 1.63%
er 1.62%
ou 1.47%
in 1.45%
ha 1.27%
es 1.27%
nd 1.24%
st 1.24%
re 1.24%
en 1.19%
ea 1.14%
or 1.07%
at 1.02%
is 1.01%

Trigraph Probability

the 1.45%
and 0.87%
you 0.58%
her 0.53%
hat 0.50%
tha 0.48%
ing 0.48%
eth 0.41%
our 0.40%
his 0.38%
thi 0.37%
for 0.35%
ere 0.34%
ith 0.33%
ent 0.32%
oth 0.31%

repetition, giving us strong evidence that the key length is a common factor of these two
numbers.

Now that we know how many different alphabets are used, we can split the ciphertext into
many ciphertexts (one for each character in the key), and then perform frequency analysis and
other techniques to break these ciphers. Note that each of these ciphertexts now represents a
monoalphabetic substitution cipher.

1.5.3 Breaking Columnar Transposition Ciphers
Breaking the simple transposition ciphers is not incredibly difficult, as the key space is typ-
ically more limited than in polyalphabetic ciphers (the key space being the total possible
number of distinct keys that can be chosen). For example, the key space here is limited by
the size of the grid that the human operator can draw and fill in reliably.

The preferred method is performing digraph and trigraph analysis, particularly by hand.1

A digraph is a pair of letters written together. Similarly, a trigraph is a set of three letters
written together. All languages have certain letter pairs and triplets that appear more often
than others. For example, in English, we know that characters such as R, S, T, L, N, and E
appear often — especially since they appear on Wheel of Fortune’s final puzzle — thus it should
come as no shock that letter pairs such as ER and ES appear often as well, whereas letter pairs
such as ZX appear very infrequently. We can exploit this property of the underlying language
to help us decrypt a message. Tables 1-5 and 1-6 show some of the most common digraphs
and trigraphs for English (again, from Shakespeare) and Klingon, respectively.

How exactly do we exploit these language characteristics? This isn’t terribly difficult, even

1A computer program could easily try every value of the key and analyze each decrypted text to see if
it makes sense in the language, for example, by dictionary lookups. This method would also work on any
other small key space, such as monoalphabetic shift ciphers.
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Table 1-6 Most Common Digraphs and Trigraphs in Klingon, Taken from Qo’noS
QonoS Sample

Digraph Probability

ch 2.53%
gh 2.27%
u’ 1.71%
a’ 1.57%
tl 1.49%
lh 1.44%
e’ 1.21%
I’ 1.15%
wI 1.14%
ng 1.13%
aH 1.13%
’e 1.02%
ej 0.99%
me 0.91%
Da 0.91%
ha 0.87%

Trigraph Probability

tlh 1.44%
wI’ 0.71%
atl 0.58%
be’ 0.57%
mey 0.53%
cha 0.50%
’ej 0.50%
chu 0.49%
pu’ 0.45%
ach 0.41%
’e’ 0.41%
nga 0.38%
Daq 0.37%
ogh 0.36%
vam 0.35%
taH 0.34%

without a computer. The trick is to write out two or more copies of the ciphertext vertically,
so that each ciphertext strip ciphertext looks like A

K
...

.

We take out the two or more copies of this sheet we have made, and line them up side by
side. We then use the sliding window technique — essentially moving the sheets of paper
up and down with respect to each other. Then we measure how common the digraphs
(and trigraphs with three letters, or 4-graphs with four letters, etc.) found in the resulting
readout are. Next, we measure how far apart they are (in characters), and this length will
be the number of rows (represented as r) in the matrix used to write the ciphertext. We then
calculate the number of columns (based on dividing the ciphertext size by the number of
rows and rounding up), so that we have the original key (k, the number of columns).

To show this method, let’s take the first transposition-cipher example ciphertext (from
Section 1.4.1) and show how to break it using the sliding window technique. The ciphertext
obtained from encrypting “all work and no play. . . ” was

AKPKNL LALENL LNASYB WDYJAO ONMODY ROAHU

The sliding windows for this ciphertext are shown in Figure 1-3.
Examining the example in Figure 1-3 can reveal a great deal about the best choices. Look-

ing at r = 1, we have letter pairs in the very beginning such as KP and PK. We can consult a
table of digraphs and trigraphs to check to see how common certain pairs are, and note that
these two letter pairs are very infrequent. For r = 2, letter pairs such as KK and PN are also
fairly uncommon. It would not be too difficult to create a simple measurement of, say, adding
up the digraph probabilities with all of the pairs in these examples, and comparing them.
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A
K
P
K
N
L
L
A
L
E
N
L

↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

A
K
P
K
N
L
L
A
L
E
N
L
L

r = 1

A
K
P
K
N
L
L
A
L
E
N

↔
↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

A
K
P
K
N
L
L
A
L
E
N
L
L

r = 2

A
K
P
K
N
L
L
A
L
E

↔
↔
↔
↔
↔
↔
↔
↔
↔
↔

A
K
P
K
N
L
L
A
L
E
N
L
L

r = 3

A
K
P
K
N
L
L
A
L

↔
↔
↔
↔
↔
↔
↔
↔
↔

A
K
P
K
N
L
L
A
L
E
N
L
L

r = 4

A
K
P
K
N
L
L
A

↔
↔
↔
↔
↔
↔
↔
↔

A
K
P
K
N
L
L
A
L
E
N
L
L

r = 5

A
K
P
K
N
L
L

↔
↔
↔
↔
↔
↔
↔

A
K
P
K
N
L
L
A
L
E
N
L
L

r = 6

Figure 1-3 Sliding window technique example for r = 1, . . . , 6.

However, a word of caution is necessary — since we removed all of the spaces, there is
no difference between letter pairs inside a word and letter pairs between words. Hence, the
probabilities will not be perfect representations, and we cannot simply always go for the
window with the highest probability sum.

It is also useful to note that digraphs and trigraphs can also be easily used for helping to
break substitution ciphers. If we calculate the most common digraphs and trigraphs appear-
ing in a ciphertext, then we can see if those correspond to common digraphs and trigraphs in
the assumed source text.

1.5.4 Breaking Double Columnar Transposition Ciphers
Breaking double columnar transposition ciphers is still possible by hand, but a little more
complex to work out visually, as we did with the sliding window technique for single colum-
nar ciphers. The operations required are much more suited to computers, because of the
large amount of bookkeeping of variables and probabilities.

The primary technique for breaking the double transposition ciphers is the same, in the-
ory, as the sliding window technique: we want to simulate different numbers of columns and
calculate the digraph, trigraph, and so on probabilities from these simulations. For double
(or even higher-order) transposition ciphers, we simply have to keep track of which character
winds up where.

It is best to examine these ciphers slightly more mathematically to understand what is
going on. Let’s assume that we have ciphertext length n, with k1 being the number of columns
in the first transposition and r1 being the number of rows in the first transposition (and
similarly, k2 and r2 for the second transposition).

In all cases, to our luck, the character in position 0 (computer scientists all start to count
from 0) always stays in position 0. But after the first transposition, the character in position
1 ends up in position r1. The character in position 2 ends up in position 2r1. Going fur-
ther, the character in position k1 − 1 ends up in position (k1 − 1)r1. The next position, k1,
falls under the next row, and therefore will end up in position 1. Then k1 + 1 ends up in
position r1 + 1. In general, we might say that a ciphertext bit, say, P[i], ends up in position
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C1 [ bi/k1c+ (i mod k1)r1 ] Here, “mod” is simply the common modulus operator used in
computer programming, that is, “a mod b” means to take the remainder when dividing a
by b. The bxc operation (the floor function) means to round down to the smallest integer
less than x (throwing away any fractional part), for example, b1.5c = 1, b−2.1c = −3, and
b4c = 4.

Things start to get jumbled up a bit more for the next transposition. Just as before, the
character in position 1 ends up in position r2, but the character that starts up in position 1 is
C1[1], which corresponds to P[k1].

We can draw this out further, but it’s needlessly complex. Then we can simply write out
the two formulas for the transformation, from above:

P[i] = C1 [ bi/k1c+ (i mod k1)r1 ]

C1[i] = C2 [ bi/k2c+ (i mod k2)r2 ]

Now we have equations mapping the original plaintext character to the final ciphertext
character, dependent on the two key values k1 and k2 (since we can derive the r-values from
the k-values). In order to measure the digraph (and other n-graph) probabilities, we have
to check, for each k1 and k2 guess, the digraph possibility for P[i] and P[i + 1] for as many
values of i as we deem necessary.

For example, to check values i = 0 and i = 1 for, say, k1 = 5 and k2 = 9, we then
run through the numbers on the previous double columnar transposition cipher used (the
alphabet, thus n = 26). We know that P[0] = C1[0 + 0] = C1[0] = C2[0 + 0] = C2[0] = A,
just as it should be. We can then calculate P[1] = C1[0 + 1× r1] = C1[r1] = C2[ br1/9c +
(r1mod 9)× r2 ]. Knowing that r1 = d26/k1e = d26/5e = 6 and r2 = d26/k2e = d26/9e = 3,
we have P[1] = C2[0 + 6 · 3] = C2[18] = B. Although performing digraph analysis would
be useless on this ciphertext (since the plaintext is not from common words, but simply the
alphabet), we could easily then calculate the digraph probability for this pair. Also, this pair
ensures that the calculations came out correctly, since the alphabet was encrypted with those
two keys in that order, and we know that the first two characters in the plaintext were ab.

1.6 Summary

In this chapter, we discussed many techniques used regularly throughout civilization until the
start of the twentieth century. As can be seen from the demonstrated analysis, the encryption
techniques are very weak from a modern standpoint, although easy to implement. However,
the ideas behind these ciphers, including substitutions and transpositions, represent the core
of modern ciphers, and we can learn a lot by studying the analyses of these now mostly
defunct ciphers.

Furthermore, we looked at many of the simple cryptanalytic methods used to break apart
these cryptographic schemes. Although modern ciphers are not this easy to break, analyzing
these ciphers illustrates ideas that resonate throughout the rest of the book. Particularly, it is
important to know that ciphers are not broken by accident — it takes a lot of work, patience,
cleverness, and sometimes a bit of luck.
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Exercises

Exercise 1. The following message is encrypted with a monoalphabetic cipher. Ignoring
spaces and punctuation, decrypt the message.

WKH FDW LQ WKH KDW VWULNHV EDFN

Exercise 2. Write a program to find the most common digraphs in a Latin-based alphabet,
ignoring everything except alphabetic characters.

Exercise 3. Write a program to find the most common trigraphs in a non-Latin-based lan-
guage (say, using Unicode).

Exercise 4. Write a program to use a dictionary file (a listing of valid words in the appropri-
ate language) to break single transposition ciphers. Your program should work by choosing
the decryption with the highest number of dictionary words formed. Such dictionary files
can either be compiled (by finding a large enough source of similar text to the kind being an-
alyzed, and making a list of the words found in it), or by using a pre-constructed dictionary
file.

Exercise 5. Implement Kasiski’s method for breaking polyalphabetic ciphers. The first step
should be producing a candidate list of numbers that could be the key length. Then, assuming
that the underlying cipher is a Vigenère polyalphabetic cipher, attempt to break the ciphertext
into multiple ciphertexts and perform a frequency analysis on each. The program should
produce a reasonable guess to a certain selection of keys, as well as accompanying plaintexts.
Use of a dictionary file is encouraged to increase the precision.
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CHAPTER

2
Number Theoretical Ciphers

In recent years, many cryptographic algorithms have been based on mathematical structures
designed to hide information: information is very easy to obscure if you know the correct
trick. This trick is knowing the scheme and a key of some sort, as is the case for the previously
studied simple ciphers.

All ciphers are based on tricks: those in Chapter 1 were more mechanical in nature.
A person or computer can perform the encryption and decryption by using a table or a
very simple algorithm, and translating the result. This chapter introduces cryptographic
algorithms in which the encryption and decryption algorithms are very mathematical, using
recent advances in number theory and algebra to make finding the information difficult.

This is not a mathematics book, but it is necessary to know a little bit about mathematics
in order to understand some of these ciphers. Regardless, I do not want to drown you with
math notation or obscure theorems. This explanation is not exhaustive (or formal), but it
should eliminate any reader confusion about the subject.

I am also torn between two desires: the desire to explain everything, but also the desire
to not lose the reader in details and in lots of tedious mathematics. I will try to explain
everything necessary in as simple terms as possible, but I understand if you gloss over some
of the mathematics and get straight to the juicy stuff. Just know that the math is there if you
want or need to read it, although for more comprehensive looks into these topics, you will
need to look elsewhere (such as in some of the books in the references).

2.1 Probability

This section constitutes a quick review of definitions and a few principles of probability,
which most likely will be review or just plain common sense.

We normally define the probability of an occurrence as being the likelihood that it hap-
pens, on a scale of 0 to 1: 0 meaning that it never happens, and 1 meaning that it always
happens. Furthermore, if we have some set of occurrences, say X, then the sum of the prob-
abilities of each of the occurrences happening has to be 1, since something must happen. We
can define situations to be more complex, where several things can happen at once, but it is
best to consider a more basic set of occurrences and build more complicated events out of it.
Because we want only one occurrence to happen at a time, we want each particular occurrent
at this level to be mutually exclusive.
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For example, if we flip a standard, two-sided coin, we have a set of two events that could
happen, {heads, tails}. We denote the probability with a capital letter P. When we flip a fair
(ideal) coin, we have an equal probability of either side facing up after flipping it, so that
P(heads) = 0.5 and P(tails) = 0.5, and their sum is 1.

The fact that the probability has to be between 0 and 1 is also convenient, because we
can calculate a negative probability as well. If we have a standard deck of 52 cards, then the
probability of drawing the jack of diamonds is 1/52. The probability of drawing anything
but the jack of diamonds is therefore 1− (1/52) = 51/52.

2.1.1 Permutations and Choices
As we start to calculating probabilities, it becomes necessary to have a clearer understanding
of counting. Specifically, we need to remember a few basic ideas about counting arrangements
and ways to choose objects.

Sometimes we will want to know the number of permutations of a given set of objects —
the number of ways they can be written down in an order. For example, with two objects, say,
the numbers 1 and 2, we can write them as (1 2) and (2 1), so there are two permutations.
With three objects, say 1, 2, and 3, we can write them down in six different orders: (1 2 3),
(1 3 2), (2 1 3), (2 3 1), (3 1 2), and (3 2 1). A clever thought would be that we started with
2 possible permutations of two objects, and when we added a third object, we have three
choices of where to put the third element in relation to the first two, giving us 6 = 3× 2
different permutations. If we want to know all of the permutations of four objects, we have
to consider all of the cases above, with the fourth object being placed in at different locations.
This means that four can be placed at the beginning of all of the above:

(4 1 2 3), (4 1 3 2), (4 2 1 3), (4 2 3 1), (4 3 1 2), (4 3 2 1)

Or we can add the number 4 in between the first and second entries, as in

(1 4 2 3), (1 4 3 2), (2 4 1 3), (2 4 3 1), (3 4 1 2), (3 4 2 1)

as well as in between the second and third, and after the third. This is four different places,
with each of them having six arrangements, for a total of 24 different arrangements. Note
that 24 = 4× 3× 2× 1.

For five items, we would then have five places to put the fifth object, and each would
have 24 places to go, for a total of 24× 5 = 120. The pattern continues on forever. These
numbers (2, 6, 24, 120, . . . ), obtained by multiplying successive numbers together, are results
of the factorial function. The factorial of a number is usually denoted with an exclamation
mark, as in 6! = 6× 5× 4× 3× 2× 1. It should be obvious, but worth saying, that there
is only one way to organize a set of one thing: it, by itself. Similarly, there is only one way
to specify the arrangement of a set of nothing: with a set of nothing. Thus, by definition,
1! = 0! = 1.

Another important concept is the idea of permuted choices — how many different ways
there are of selecting two objects from a set of four objects, where order does not matter. For
example, from the set of numbers 1, 2, 3, and 4, how many pairs can we pick? We can easily
see that there are the following six pairs:

(1 2), (1 3), (1 4), (2 3), (2 4), (3 4)

where order doesn’t matter, so (1 2) is equivalent to (2 1).
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The number of such sets that are being picked can be calculated using a binomial coef-
ficient — it is a function of two variables, n and k, where n is the number of objects in the
larger set, and k is the size of the sets that are desired to be picked from the n objects, where
order does not matter. In this book, we denote this binomial coefficient as (n

k), although it can
also be denoted as Cn,k and C(n, k) or even nCk. When read out loud, it is almost always pro-
nounced, “n choose k.” (I say “almost always” because most mathematicians and scientists
frown upon saying “always” unless there is proof.)

The simple way to calculate these binomial numbers is to use the following formula,
based on the concept of permutations and factorials above:(

n
k

)
=

n!
(n− k)! k!

For example, say we have five cars to choose from, and we need to pick two. How many
ways are there to pick two of them? In this case, we don’t care about the order in which they
are picked, just the number of ways to choose two items from five. Calculating “5 choose 2”:(

5
2

)
=

5!
(5− 2)! 2!

=
5× 4× 3× 2× 1
3× 2× 1× 2× 1

= 10

meaning we have 10 different pairs of cars that could be chosen.

2.1.2 Dependence
Probabilities can be more complicated, as mentioned. For example, sometimes events are not
so easily modeled as a set that adds up to 1. For example, say we are rolling a six-sided die,
and we define a simple game: Alice scores if the number that comes up is even, and Bob
scores if the number is prime (see Figure 2-1). Whoever scores wins, except if both or neither
scores, in which case it is a draw. This means that in the sticky situation when we roll a 2,
which is both even and prime, both score, and therefore it is a draw.

A = 0
B = 0

A = 1
B = 1

A = 0
B = 1

A = 1
B = 0

A = 0
B = 1

A = 1
B = 0

Figure 2-1 The Alice and Bob dice game. Here, A = 1 if Alice scores, and B = 1
if Bob scores.

The preceding example can be broken into a normal set of occurrences of the die rolling
a number in the set {1, 2, 3, 4, 5, 6}, and the above rules constituting subsets of this, so that
the probabilities will again add up to 1. (For example, we would have the rolls {1, 2, 3, 4, 5, 6}
represent {D, D, B, A, B, A}, where D means draw, B means Bob wins, and A means Alice
wins.) The particular situation we are analyzing might dictate one representation or another
to use (such as if we are interested in who wins or who scores).

Measuring the probability of a draw, which in the above happens when a 2 is thrown on
the die, is more complicated because the events are dependent — the outcome of one event
happening affects the probability of another event happening. If events are independent
of one another, then one happening will have no influence on the probabilities in another
event. For instance, if we threw the die a second time, the second throw would have the same
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probabilities again, since they are not affected by the previous throw. However, if we threw
four dice, calculating how many times a 6 was rolled, and rerolled any dice that did not roll
a 6 a second time, then the outcome of the first roll will affect the second one — the throwing
of the dice would then no longer be independent.

2.1.2.1 Fun with Poker1

Maybe a more concrete example or two might solidify a few of the above ideas — at least,
more than the preceding, slightly abstract examples.

Poker is a game played with a standard 52-card deck of playing cards (see Figure 2-2).
There are four suits (shapes associated with particular cards), each having an equal number
of 13 cards: (in increasing order of power) numbered cards 2 through 10, a Jack, a Queen, a
King, and an Ace (which doubles as a virtual 1 as well).

Figure 2-2 Standard deck of 52 playing cards. Graphics licensed under LGPL [1].

A quick rundown of the basic rules: the goal of nearly every kind of poker is to obtain a
hand of five cards. The makeup of these five cards determines your strength. If the particular
poker game allows a player to have more than five cards, the player then will typically have
to select the best five-card poker hand out of those cards. In the event of a tie — say, two
players both have flushes — then the player with the highest card in the flush wins. If that
is also tied, then the next card, and so forth. Similarly, if players both have a pair, then the
higher pair wins (thus, a pair of Kings beats Queens, and a pair of Aces beats Kings). If both
players have the same pair, then the one with the next highest card in their hand wins, and
then the next highest (in the case of a tie), and so forth. The listing of five-card poker hands
is shown in Table 2-1.

Texas Hold ’Em has been a particularly popular poker variant for quite a while, and
a rather simple one to explain. We won’t get into the betting structure, but some of the
mechanics will be of interest. Also, in Texas Hold ’Em, no suit is better than any others, so
there can be ties.

Every player (usually between 2 and 10 players) is dealt two cards, which only that player
sees. Next, three community cards are placed in the middle (the flop). Then, a fourth
additional card is placed in the middle as a community card (the turn). Finally, a fifth card is
added to the community cards (the river).

1Another optional section. But hopefully a fun one.
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Table 2-1 Ranking of Poker Hands

Hand Description of the Hand Hand Description of the Hand

High
Card

If you have nothing else in this
list, the value of your highest
card.

The best this person has is the
King.

Flush All five cards are of the same
suit. Ties broken on the highest
card.

The player has an “ace-high”
flush.

Pair A pair of the same value card.

Here, the player has a pair of
jacks.

Full
House

Three of a kind and a separate
pair. The three of a kind is used
the tiebreaker.

Here is a full house, “8’s over
Jacks.”

Two Pair Two distinct pairs, same-valued
cards.

The player has two pairs: 10’s
and 7’s.

Four of a
kind

Four cards of the same value.

The player has four twos.

Three of
a Kind

Three cards of the same value.

The player has “trip 9’s.”

Straight
Flush

All cards are of the same suit
and are sequential.

This straight flush is the “Royal
Flush.”

Straight All five card values are
sequential. Aces play as below
2’s or above Kings, but not both.

The player has a “5-high”
straight.

Hands are arranged top-to-bottom in increasing order of strength.
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Each player can use the community cards, as well as the cards in their hand, to make the
best five-card hand possible. The player with the highest hand wins.

Texas Hold ’Em is an interesting game to analyze. It’s just on the edge of computationally
feasible to calculate exact probabilities for many of our scenarios.

A first question we might ask is, how many different seven-card combinations can there
be? Well, in our case, since order doesn’t matter, there are going to be 52 cards, and we want
a set of 7 of them. This can be calculated with(

52
7

)
=

52!
45! 7!

= 133,784,560

Note this doesn’t even take into account the fact that suits are built equally. Many of these
hands will be repeats. How many? We’ll leave this as an exercise to the reader.

As we’ll see more of later, solving cryptanalytic problems involves a lot of probability.
Indeed, much of cryptanalysis is figuring out how the probabilities in one part of a cipher
affect the probabilities of another part, then measuring actual outcomes to attempt to learn
information about parts that we cannot see, such as the plaintext or the key. In many ways,
this is not unlike analyzing some poker situations.

Let’s analyze some poker scenarios. One thing someone usually wants to know is, what
is the probability that a player will get a pair in their own private hand (not in community
cards) to start out with? This is usually considered to be a good thing. To start out with, it
doesn’t matter who is sitting where, or how many players there are. Since the player we are
concerned with can’t see anyone else’s cards, then there is no information to be had, so we
can ignore the fact that other people are playing.

The first card is dealt to the player, and it can be any one of the 52 cards in play, so it
won’t affect the player. But, to get a pair, the second card has to be one of the only other three
cards left in the deck of (now) 51 cards in order to pair with the first card dealt. Thus, our
probability is

52× 3
52× 51

=
3
51

=
1

17
≈ 5.88%

This means that a player can expect to receive a pair dealt at the beginning about 1 out of
every 17 hands, on average.

A situation people often see themselves in playing poker is what is called a draw — where
a person needs certain cards in order to get a stronger hand, and there are still cards to be
dealt.

For example, if a person has two cards of the same suit as their own personal cards (his
“down” cards), it is easy to calculate that it is fairly improbable that the person will get a
flush immediately on the flop. But what if two of the three cards dealt are the same as the
player’s down cards? What is the probability then that the player will obtain a flush?

The only information known to the player is the identities of the down cards and com-
munity cards. Knowing this, 4 of the 13 cards in the desired suit are already in play, and 1
additional card that is not, for a total of 5 cards in play. The player has two opportunities to
get a card of the desired suit: the turn and the river cards, which will be picking cards from
47 and 46 cards, respectively.

But the probability isn’t quite so simple. There’s the possibility that both cards are of the
suit, none are, or just the first or the second one is. Rather than try to add up the probabilities
of each of these events occurring, we can take the probability that neither card is of the
desired suit, and reverse it (by subtracting it from 1). In this case, we have 9 cards that we
are avoiding out of 47, and therefore 47− 9 = 38 cards that are desired. We then have to try
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our luck again, and attempt to get none of those 9 out of the 46 left, so we have 37 to choose
from. Since these happen in succession, we multiply

38
47
× 37

46
≈ 0.6503

This is the probability that we fail in our endeavor to get the flush. Therefore, the proba-
bility that we get it is the above subtracted from 1, which is about 0.3497, or 34.97%.

We won’t venture further into poker probabilities here (though there is some more inves-
tigation in the exercises), but cryptanalysis is much like poker in some regards. In cryptanal-
ysis, we often are trying to get a key, which can be like trying to figure out the other person’s
hand, or trying to figure out how to win the game. Nearly every technique in cryptanalysis
is probabilistic and statistical: It works, statistically, some of the time, and the trick is figuring
out how much of that time it does work, and adjusting the algorithms appropriately.

2.1.3 The Birthday Paradox
The birthday paradox is an important concept in cryptanalysis. This “paradox” shows that
the probabilities aren’t always what they first seem.

The traditional telling of the paradox is to ask someone, “How likely is it that two people
have the same birthday?” Here, we are interested in the probability of a collision occurring,
where two events have the same result. In theory, the correct answer is not too difficult
to figure out — 1/365 ≈ 0.274% (not including leap years, or taking into account any other
factors that will skew this number in real life). The two events are independent: the first
person’s birthday doesn’t influence the birthday of the second person. Assuming uniform
distribution of birthdays, then the first person’s birthday will be a random day. This means
that we can just assume that the first person’s birthday is fixed: it won’t be changing. We
take the second person’s birthday as being random as well. The probability that it is going
to happen to coincide with the first person’s birthday is the same probability that it would
happen to be any other day as well, since they are all equally probable: 1/365.

But what happens if you ask the question, “What is the probability that at least two people
out of three have the same birthday?” This is where things start to get a bit messier. If we are
just concerned with collisions in general (not caring which particular pair of people shares a
birthday, as long as one pair does), then we now have three different pairs to consider: 1–2,
2–3, and 1–3. Any of these pairs might share a birthday.

What is now the probability that a collision occurs in these three pairs? We might also
naively answer, “Just add the probabilities of one collision together three times!” This does
seem logical at first, but this does not scale well. We have to start considering cases such as if
there were, say, 400 people. This would mean (400

2 ) = 79, 800 different pairs, and therefore a
79, 800× (1/365) = 21, 863% probability, which is ludicrous. Hence, this is definitely not the
right way.

This is because, once you add a third person, you aren’t just adding one more day to
check; you are adding two possible days, since the third person could match the first or the
second. Therefore, adding a second day significantly increases the probability that a collision
occurs. However, eventually this will slow down to the point where adding an additional
person is unlikely to greatly affect the probability. For example, if you have a group of 363
people and another group of 364 people, there is nearly no difference in the two groups’
possibility of having a repeat birthday.

To model these situations, it’s often convenient to look at the situation in reverse; that
is, rather than trying to ascertain the probability that, say, of n people, there is at least one
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birthday collision, let’s look at the probability that there are no birthday collisions with n
people.

In this case, we are going to assume that a person’s birthday has a completely even chance
of occurring on any given day out of 365. We will generalize this to be any of n particular
objects we might pick, so that this is not specific to birthdays — it could be anything that
someone has a finite number of choices for, such as cryptographic keys. For birthdays, we
just note that n = 365.

To reiterate, in this case we are interested in the probability of no repetition. For the first
object, we will just pick any object (in our birthday example, this is a day of the year), as we
are guaranteed to have no repetitions; thus, we can consider the probability of no repetition
to be n choices out of n total choices, which is 1. The second choice we make is slightly
dependent on the first one. Since we picked one of the objects (or birthdays in this case), we
have n− 1 choices left in order for there to be no repetition, for which we have a probability
of (n− 1)/n. If we have a third person, then we have a probability of (n− 2)/n, since we
now have two birthdays that would cause a collision if chosen.

If we extrapolate this out to, say, k people, then this would be

n− (k− 1)
n

=
n− k + 1

n

Now, for every birthday we add on, we want there to be no repetitions. Thus, we start
with one birthday, add another (and calculate the probability), add another (and calculate the
probability), and so on. In order to calculate the likelihood of all of these events occurring in
sequence, we multiply the probabilities together, since we need the first one to happen, and
then the second, and then the third, and so forth.

To look at it more simply, take fair coin tosses again. If we want to know the probability
that we get heads three times in a row, we take the probability that we have heads after
the first throw (0.5); since we are already in this situation with this probability, then the
probability of both events happening is the probability of the first times the probability of the
second. Therefore, we multiply the first outcome by the probability that we have heads the
second time (0.5× 0.5 = 0.25), and then multiply that by the probability that we have heads
the third time (0.25× 0.5 = 0.125). Each successive event always leads to a multiplication of
the previous probability with the next.

For our probabilities in the birthday paradox above, we then have a probability of

(n)(n− 1)(n− 2) · · · (n− k + 1)
nk

Note that the leftmost n in the numerator cancels out one of the n’s in the denominator. We
can then pair each number in the numerator with an n in the denominator, such as (n− 1)/n,
which can be rewritten as 1− (1/n), with (n− 2)/n = 1− (2/n), and so forth, to rewrite the
product as (

1− 1
n

)(
1− 2

n

)
· · ·
(

1− k− 1
n

)
Here we have to use some calculus trickery to get this in a form more easily manipulatable.
The concept of Taylor polynomials allows us to use the approximation that

e−1/n ≈ 1− 1
n
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This approximation holds true when 1/n is very small, and therefore when when n is large.
(Note that e is the Euler constant, approximately equal to 2.71828.) For birthdays, n = 365 is
perfectly sufficient for the approximation to hold. The reader can easily verify this voodoo
math by verifying in a calculator that 1 − (1/365) ≈ 0.9972603 and e−1/365 ≈ 0.9972640,
which are pretty close.

We now have the previous quantity rewritten, approximately, as

e−1/ne−2/n · · · e−(k−1)/n

Combining the exponents by adding them yields

e(−1−2−3−···−(k−1))/n

This might remind us of the familiar identity that 1 + 2 + 3 + · · ·+ n = n(n + 1)/2, allowing
us the further simplification

e−k(k−1)/(2n)

Now this is something we can use. Specifically, we will want to know the value of k, rel-
ative to n, for us to have a certain probability of no repetition (and, therefore, the probability
of at least one repetition). It’s easy to know when there is a 100% chance: just let k = n (for
birthdays, pick 367 people, and there is guaranteed to be a repetition, even with leap years
taken into account). Something more useful to know would be the tipping point: when will
the probability be about half (0.5)? In this case, the probability of no repetition is the same as
the probability of at least one repetition (since 1− 0.5 = 0.5), thus we can just set the previous
approximation for our probability equal to 0.5 and solve for k in terms of n

1/2 = e−k(k−1)/(2n)

If we take the natural logarithm of both sides, we get

ln(1/2) =
−k(k− 1)

2n

Since ln(1/x) = − ln x, because of the rules of exponents, we have

ln 2 =
k(k− 1)

2n

And multiplying both sides by 2n:

k(k− 1) = n(2 ln 2)

We can solve this for k exactly (using the quadratic formula from college algebra), but the
results look a little inelegant. Since we already have made one approximation, there’s not too
much harm in making another one, especially if it simplifies our final result. In this particular
case, we are already assuming that n is large. We can kind of gauge then that k is going to be
a bit large too, but not quite as much so as n. But if k is still pretty large, then k ≈ k− 1, so
that k(k− 1) ≈ k2. For example, if k were about 100, then there would be very little difference
between 100(100− 1) = 9, 900 and 1002 = 10, 000: the difference is only 1%.

This allows us to write the preceding statement as

k2 = n(2 ln 2)
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Taking the positive square root of both sides (since a negative k would not make sense):

k =
√

n(2 ln 2)

We can take the
√

2 ln 2 ≈ 1.1774 outside, and substitute its approximation:

k ≈ 1.1774
√

n

This is pretty significant. It means that if we have n possibilities, we need only to look at a
constant times the square root of that number of events in order to have about a 50% chance
of having a repetition. For birthdays (with n = 365), this means that k ≈ 22.494. Rounding
up to get a better than half chance, we get k = 23. That is, if you have a roomful of at least
23 people, then you have a pretty decent chance that there is at least one repeated birthday.
(This often works well when attempting to demonstrate the birthday paradox principle to
the said roomful of people.) Figure 2-3 shows a plot of the birthday paradox probabilities,
giving a good idea of how the probabilities increase with more samples (in our case, people’s
birthdays).
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Figure 2-3 Plot of birthday paradox probabilities of at least one collision at up
to 80 people. The function increases very rapidly after the first few samples are
taken, and hit above 50% at about the 23rd person.

We can use the birthday paradox as a tool to use against certain cryptographic algorithms.
For example, we may be concerned with finding two particular plaintexts that result in some
certain bit pattern in some (or all) of the ciphertext. If this is a bit pattern of n bits, we would
normally have to acquire 2n plaintexts and ciphertexts in order to guarantee having the same
ciphertext pattern twice. However, the birthday paradox tells us that, if we store each of the
pairs, we only have to look at about

√
2n = 2n/2 ciphertexts to expect to find the pattern

twice. (We normally ignore the multiplicative constant in these cases.)
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The next section expands one this idea for a certain class of algorithms.

2.1.4 Cryptographic Hashes
Let’s discuss a very basic side effect the birthday paradox has on hashing algorithms, such as
MD5 and SHA-1 [7, 8].

For starters, a hashing algorithm takes as input a (usually large) stream of data and
produces a digest (also called a checksum), which is some unique characteristic of that data.
For example, the string all work and no play, when transmitted using standard ASCII
encoding of Latin characters, results in the transmitted bytes (in hexadecimal):

61 6c 6c 20 77 6f 72 6b 20 61 6e 64 20 6e 6f 20 70 6c 61 79

We can calculate a simple checksum of this data by performing normal integer addition
of each byte together, and taking only the least significant byte as the result (the last 8 bits).
In the previous bytes, this checksum would be 42.

What does this give us? Well, it’s a condensed representation of some parts of the im-
age, with the hope that any other random message would have a different checksum. This
way, if one person receiving a message knew to look for a certain checksum, and only ac-
cept messages with that checksum, then the communicating parties would have a little more
confidence in their communications.

But what if an intruder wanted to break through this confidence and send a false message?
How difficult is that? Just using random messages, then we can use the birthday paradox to
look at the problem statistically. A random message is going to have a (hopefully) random
checksum. Ignoring any possible patterns to be found or other clever ways to circumvent this
problem, we want to know how many of these we need to calculate to have a match for a
message.

Since this hash is 8 bits long, for a total of 256 values, then the birthday paradox says that
if we have

1.1774
√

256 = 18.8384

or about 19 hashes, then we have a better than half chance of having a repeated hash of the
random messages. Unfortunately, this doesn’t give us any particular value — it will be ran-
dom. However, sometimes the goal is merely to demonstrate the weakness of the algorithm
by finding random messages that have the same hash — this is called a collision attack.

Getting messages that hash to a particular value is, in general, a bit harder. This is the goal
if we wanted to spoof the preceding message, but knowing only its hash value (this is called
a preimage attack). A clever reader should be able to figure out how to spoof a message that
has the same checksum as before.

Owing to the insecurity of this simple hash algorithm, it is not used for secure commu-
nications, although similar additive checksums are used to check the message for errors in
transmission, since a message that has been corrupted will, we hope, have a different check-
sum. For hash algorithms with a little more robustness, we need to turn to MD5 and SHA-1,
two of the leading cryptographic hash algorithms, with digest sizes of 128 bits and 160 bits,
respectively. A cryptographic hash algorithm is one that is not based on a simple trick, but
tries to obfuscate all of the information so that the outputted digest is as random as possible,
with no possible way to figure out much of anything in the original message. It is their goal to
be true one-way hashes, where it is impossible to extract any information about the original
input from the hash’s output.
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For example, MD5 (see Section 4.12.3), which is the fifth in a series of message digest
algorithms created by Ronald Rivest, works on messages represented as bits, of arbitrarily
large (and small) length. It then does some pre-processing, and finally, on each 512-bit block,
it churns through 64 operations to make it as much of an unrecognizable mush as possible,
including using the output of the previous operation of 512 bits. SHA-1 works in a similar
fashion (see Section 4.12.4).

Both hashes take a lot longer than our previous additive sum. However, the confidence in
both algorithms is also incredibly higher, since both are still used to protect value information.
Cryptographic sums are often powerful enough to be combined with some of the forms of
cryptography (covered below in this chapter), to provide assurances of the authenticity and
integrity of the message without having the message itself encrypted, providing a form of
digital signature. (This is because doing mathematical operations on a very large input text
can be cumbersome, but the hashes are a small, fixed size.)

2.2 Number Theory Refresher Course

We have now covered some basic knowledge of probability. Fortunately, we need to know a
bit more math to understand a lot of cryptanalysis, so we get the pleasure of a run-through
of number theory, and later algebra, as well.

The foundation of many modern cryptographic algorithms lies in number theory — the
mathematical study of integers, especially relating to topics in divisibility (such as prime
numbers). Cryptanalysts definitely need a working knowledge of these topics in order to
properly understand the workings of many cryptographic algorithms (such as RSA) and
cryptanalytic methods (such as factoring algorithms, like Pollard’s Rho).

Before we dive in too deeply, let’s go through a few quick definitions. The basic classes
of numbers that we are concerned with are integers, rational numbers, real numbers, and
complex numbers. Integers (Z) are the class of numbers that we could theoretically count to,
as well as zero and the negative of these counting numbers: {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
These are positive and negative numbers with no fractional part, including zero. Rational
numbers (Q), or just rationals, are the class of numbers that can be represented in the form
p/q, where p and q are both in Z, as with 1/2 or 2/3. Note that if q = 1, then the rational
number is also an integer, thus all integers are rational. Real numbers (<), or just the reals,
include the integers and the rationals, as well as any other numbers that can be numerically
compared (less than, greater than) with integers and rationals, but that may not have rational
form, or even a finite representation. This includes numbers such as π,

√
3 that, if written out,

would take an infinite number of digits to express their exact value. The real numbers that
are not rational are called, logically, irrational. However, the reals do not include numbers
that have a component with a square root of a negative number: These numbers cannot be
compared with, say, the integer 2, to say which one is “greater,” for example. The class of
numbers that do include these are the complex numbers (C), which all have the form a + bi,
where a and b are in <, and i =

√
−1.

2.2.1 Divisibility and Prime Numbers
We’ll assume everyone understands what it means for an integer (say, c) to be divisible by
another non-zero integer (say, a). The definition we will use is that if c is divisible by a, then
there exists another integer (say, b) such that c = a× b. Hence, there is no remainder when
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c is divided by b or when c is divided by a. Although I will try to avoid confusing notation,
mathematicians often denote the fact that a divides into c with no remainder by writing a | c,
or “a divides c.”

Now for a few properties of divisibility: It should come as no shock that division is
transitive — that is, if a divides c and c divides another number (say, e), then a divides e. This
can be easily shown by noting that c = a× b. And by our previous definition of divisibility,
there must be a number d such that e = c× d. Then, by simple substitution, e = a× b× d,
which shows that a will divide into e.

Another concept that is important is the greatest common divisor (GCD) of two numbers,
a and b, often written as a math function gcd(a, b). This number is defined to be the largest
positive integer that divides both a and b. In the special case that the GCD of two numbers
is 1, then these two numbers are called relatively prime. If a number shares no common
divisors with any numbers less than it, other than 1, then that number is defined to be prime.

2.2.2 Congruences
An important aspect of computers, which we will ultimately use to implement any crypto-
graphic or cryptanalytic algorithm, is that they are finite; they do not contain unlimited mem-
ory, so we can’t operate all of the integers, but smaller sets of them. We need to have some
mathematics that understands this restriction. Luckily, the theory of congruences allows us to
perform operations on subsets of the integers. In fact, many of the modern crypto-algorithms
actually rely on certain properties of congruences in order to perform their magic.

The basic definition of a congruence (although it is actually three definitions) is that if we
have three integers, a, b, and m, then we say that a is congruent to b, modulo m, if m divides
(a− b). This is written in the more compact form, a ≡ b (mod m). We also refer to m as the
modulus.

An important corollary to the definition is that, if a ≡ b (mod m), then we know that m
divides (a− b), and therefore we know that there is some integer k such that mk = a− b, or
a = b + km.

As a quick, historical example, computers before the year 2000 had a problem: They
would store only the last two digits of the year, since it was assumed that all dates were in
the 1900s. This was known as the Y2K problem. Since we consider only two digits, this is
the same as considering all numbers modulo 100 (since, if we take any number’s remainder
when divided by 100, we would be left with the last two decimal digits). The problem then
arose that 2000 ≡ 1900 ≡ 0 (mod 100). This caused some computer programs to have
erratic behavior, such as suddenly transition from the year 1999 to 1900, with unpredictable
results.

A similar problem might occur again in 2038. It turns out that the POSIX standard section
4.14 and standard header file <sys/time.h>’s time_t construct [4] use the original time
definition from the first edition of UNIX [12], which measures time as a signed 32-bit integer
containing the number of seconds since 1 January 1970. This gives us a total of 2,147,483,647
seconds to work with, so that we are working modulo 2,147,483,648. When we divide this by
60 seconds per minute, 60 minutes per hour, 24 hours per day, and 365.25 days per year,2 the
result is a little more than 68 years from 1970, or sometime in 2038, before the congruence

2Technically, there are about 365.26 days per year, not counting leap seconds. This is because we normally
skip leap years every 100 years, except when we don’t every 400 years. However, since we aren’t skipping
leap years for the next 93 years, we can just ignore this. Also, the POSIX time standard doesn’t include leap
seconds.



Chapter 2 Number Theoretical Ciphers 34

between 0 and 2,147,483,648 kicks us back to 1970.
It also turns out that numbers that are congruent with a certain modulus can be used

interchangeably for many mathematical operations also in that modulus. These operations
include addition, subtraction, and multiplication, but not division. These three operations
work exactly like they do with normal numbers: addition is still addition, and 5 + 5 is still
going to be 10 modulo 20, but it will be congruent to an infinite number of other integers in
the modulus, including 30, 50, and even −10.

For example, in modulo 10, 12 and 2 are congruent to each other. If we performed, say,
2 + 2 mod 10, we know that the answer is congruent to 4 modulo 10. And if we compute
12 + 12 modulo 10, we know that we will get 24, which is congruent to 4 as well. Subtraction
and multiplication work similarly.

But division is not so straightforward. For example, let’s take modulo 10 again. Comput-
ing 20/5 = 4, if division worked as we expect it to, we should be able to replace 20 with 0
and then divide by 10, since 20 ≡ 0 (mod 10). However, in that case, we get 0, which is not
congruent to 4.

A little more terminology: A set of numbers that are all congruent to each other in a
particular modulus are often grouped together in a set called its congruence class or residue
class. As such, any particular number is referred to as a residue.

Furthermore, if we have a complete set of residues (CSR), then every integer will be
congruent to exactly one residue in the set. This can work as a basis to do any arithmetic for
the modulus. All operations can be computed for the elements of the CSR, and the results
written also as elements of the CSR. For example, a complete set of residues for modulo 10 is

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

which we will often use as our standard CSR. However, another complete set is

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

or even
{101, 102, 103, 104, 105, 106, 107, 108, 109, 110}

There is another important set of residues we need to discuss: a reduced set of residues
(RSR). With a CSR, we have every integer congruent to exactly one element of the CSR. With
an RSR, however, we only care about numbers that are relatively prime to the modulus. A
set of numbers that has the property that every integer relatively prime to the modulus is
congruent to exactly one of the numbers in the set is an RSR.

For example, say we have a CSR of 10 again, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. We calculate the
RSR by going through each item in the list and deleting every number that is not relatively
prime to 10. Since 10 = 2× 5, then we have 2, 5, and 10 taken out, as well any multiples
(which then eliminates 4, 6, and 8, since they are multiples of 2), giving us an RSR of

{1, 3, 7, 9}

There are many such RSRs. For example, if we multiply each number in an RSR by, say,
a (with the condition that a is relatively prime to m, so that they share no divisors), then
the new numbers will also form an RSR. This is because each number, which was already
relatively prime to m, was multiplied by a number that is relatively prime to m and hence
will continue to be relatively prime (since the numbers won’t grow new prime factors).
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We now have another important definition based on the RSR. The Euler totient (or just
the totient) of a number is the size of the RSR of the set of all integers less than it. In the
previous example, we calculated the Euler totient of 10. We typically write the totient of an
integer n as φ(n). The previous example tells us that φ(10) = 4.

Another equivalent definition of the Euler totient of n is the number of positive integers
less than n that are relatively prime to n.

An important property of totients is called Euler’s totient theorem (since Euler had many
theorems). It states that if m > 1, and a and m are relatively prime, then aφ(m) ≡ 1 (mod m).

To show how this is true, let’s take a reduced set of residues, {r1, r2, . . . , rφ(m)} (since
the totient is involved with how many numbers are in this set). Then we also know that
{ar1, ar2, . . . , arφ(m)} is a reduced set of residues (if the GCD of a and m is 1). Furthermore,
we also know that for any number in the first set, there will be exactly one number in the
second set that is congruent to the first (since any two sets of reduced sets of residues are
equivalent modulo m), since every number that is relatively prime to m must be congruent to
exactly one number in each set.

Now consider the number aφ(m) × r1 × r2 × · · · × rφ(m). There is exactly one copy of a for
each of the r’s, thus we can write this as

(a× r1)× (a× r2)× · · · × (a× rφ(m))

We also know that any set of RSRs is congruent modulo m, element by element, to any
other set. This means that we can replace the previous expression, so that our original number
can be written

aφ(m) × r1 × r2 × · · · × rφ(m) ≡ r1 × r2 × · · · × rφ(m) (mod m)

We also know that each r is relatively prime to m, meaning that we can divide by them,
obtaining

aφ(m) ≡ 1 (mod m)

This is exactly the result we wanted.
We have three corollaries to this statement. Specifically, since

aφ(m) ≡ 1 (mod m)

we have to multiply both sides by a to obtain

aφ(m)+1 ≡ a (mod m)

Also, we can split off one of the a’s from the former, to get

aφ(m)−1 × a ≡ 1 (mod m)

We can therefore see that aφ(m)−1 is the inverse of a (modulo m).
The other corollary might take a slight bit more convincing. If we have x ≡ y (mod φ(m))

and an integer g that is relatively prime to m, then gx ≡ gy (mod m). Why? We know that,
from the definition of a congruence, x = y + k φ(m). We can just rewrite gx to get

gx = gy+k φ(m) = gy
(

gφ(m)
)k
≡ gy (mod m)

since gφ(m) ≡ 1 (mod m).
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After we get through a bit more algebra, we will see how we can use the Euler totient
theorem and its corollaries for cryptography.

2.3 Algebra Refresher Course

“Algebra? Why study algebra in a book about cryptanalysis? Let’s just break some codes
already!” the reader might exclaim. And a very valid set of concerns this is.

In the preceding section, we did a quick refresher on number theory and probability, and
it seems natural to express most of the operations in cryptography and cryptanalysis based
on them. After all, we know how to do arithmetic and other operations on numbers, and
computers are constructed for working well with integers represented in binary.

It turns out, however, that many important mathematical properties of cryptography and
cryptanalysis are based on algebraic concepts. Furthermore, many modern cryptographic
algorithms are based on algebraic constructs, such as elliptic curves, that are not easy to ma-
nipulate using normal kinds of mathematical operations. Even understanding some of these
algorithms requires at least some knowledge of algebra, and attempting to break them even
more so! Furthermore, many algebraic techniques can be used to break cryptographic algo-
rithms based on numbers too. Hence, familiarity with algebra is important to cryptanalysis.

Again, however, this is not a math textbook; if the reader wishes to understand the subject
of algebra more deeply, then they should consult a more thorough source than this. Here, we
provide a crash course in algebra to help refresh your knowledge, or at least provide enough of
an understanding that you can attempt to understand the methods of cryptography presented
in this chapter.

2.3.1 Definitions
The study of collections of objects and operations on those objects is called algebra. In
algebra, these operations are constructs that take as input two objects and return an object,
usually (but not always) with all three objects belonging to the collection with which we are
concerned. These operations are examples of functions, which formally means that there has
to be an output for every possible input, and there can be only one output for every input (so
you can’t run the function twice with the same input and get different outputs). For example,
a simple function from the integers to the integers is f (x) = x2, so that f (1) = 1, f (2) = 4,
f (3) = 9, and so forth. Note that every integer has a square, and that you can’t square the
same integer twice and get different results, therefore this is definitely a function.

In general, we often denote these collections of objects, or sets, that we are operating
on with capital letters, such as A, F, or G, with the operations being symbols such as ◦,
+, or ×, although this is merely convention. A set is normally written with curly braces
around the objects contained in it. For example, A = {0, 1, 2} is a set containing three objects:
the numbers 0, 1, and 2. The objects need not be numbers: B = {cat, dog, 18,⊕} is a set
containing much more arbitrary objects, but is still a set.

We also often want more compact and unambiguous ways of writing operations so that
everyone is on the same page. We write an operation often as

◦ : A× B→ C

to mean that the operation ◦ acts on pairs of objects, one from A and one from B, and will
act on them somehow to return a result from the set C. In a shorter hand, this can also be
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written as a ◦ b = c, where a is an element of A, b is from B, and c is from C.
These operations could be quite diverse. For example, say that we have a set of peo-

ple (P = {Tom, Sara}), a set of chairs (C = {Stool, Recliner}), and a set of emotions (E =
{Happy, Sad}). We will use the symbol ⊕ for the operations. We could have the operation
define a relationship between the objects, such as the fact that a person from P has an emotion
from E toward an object in C, defined abstractly as ⊕ : P× C → E. We can define the fact
that Mary is Happy to sit in the Recliner, by stating that Mary⊕ Recliner = Happy.

If this seems too elementary, then don’t worry — things will get complicated soon enough.
As a special case, if we have that operation consist of operations on two objects from the

same set, and churning out an element of that same set (so that ◦ : A× A→ A, for example),
then we are getting somewhere. We want a few properties to be satisfied for these operations
to be useful. First, we want to have an identity element (say, e) — where any operation
involving, say, a and the identity element gives us back a. For example, if we had addition as
the operation, then a + e = a, and for addition we have the identity 0, as 0 plus anything is
that anything. For multiplication, the identity is 1.

We want two more properties: inverse elements and associativity. For every element,
we want to have an opposite, or inverse, element so that when the two are operated on
together, the result is e, the identity. With integer addition, 3 and −3 are inverses. Integers
with multiplication don’t have this property — for example, there is no inverse of 1/2.

Associativity is merely the property that, given three elements (say, a, b, c), we have the
equality

(a + b) + c = a + (b + c)

meaning that it doesn’t matter in which order we perform two simultaneous operations.
Addition and multiplication of integers both satisfy this property. Subtraction and division
do not, though, since (1− 2) − 3 = −1− 3 = −4 and 1− (2− 3) = 1 + 1 = 2, which are
clearly not equal.

If we have a set with an operation with all three properties, then they are both collectively
called a group, and would be written as a pair, (A, ◦) or (Z,+). If we have an operation on
a group (A, ◦), and any two elements from A (say, a and b) satisfy a + b = b + a, then it is
called a commutative group, or an abelian group.

There is just one more consideration to make for an operation to be valid. The operation
needs to be well-defined; we cannot have a valid group of (Z,÷), since 1÷ 2 = 0.5, which is
not an integer, and therefore does not qualify as a valid operation on the integers.

Two more definitions: If we have two operations, like addition and multiplication to-
gether, then we have some other structures. A ring is where we have two operations on a set,
say (A,+,×). In the ring, (A,+) must form an abelian group, while the second operation
(usually multiplication) has, at least, the property of associativity, although it need not have
an identity or inverses for any elements. For the integers, we can have a ring (Z,+,×), since
the addition property is abelian, but we don’t have as strict rules on ×.

Finally, if we have a ring (A,+,×), and furthermore have every element of A (except the
additive identity, usually 0) form an abelian group under ×, then this ring is a field. This
means that we do have to have an identity and multiplicative inverses; therefore (Z,+,×) is
not a field. However, (Q,+,×) is a field, since every element (except 0) will have an inverse.

A particularly interesting kind of field to cryptologists is the finite field, where the un-
derlying set has a finite number of elements. We could, of course, have counterintuitive
definitions, such as to define a new finite field, say, (A,⊕,�), and A = {π, e}. We can then
define the rules as being
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π + e = e
π + π = π

e + e = π

π � π = 0
π � e = π

e� e = e

Here, essentially, π is the additive identity (like 0), and e is the multiplicative identity (like
1).

Normally, however, we usually have a set of integers to work on, like {0, 1, . . . , n − 1},
with normal integer addition and multiplication, but modulo n to reduce everything back to
the finite field.

However, not every value of n works very well, at least with normal addition and multi-
plication (taken modulo n). If we have the set {0, 1, 2, 3, 4, 5} (often abbreviated as Z6), then
it is difficult to find multiplicative inverses of every number. Only when the number n is
prime do we find nice, easy-to-work-with numbers. We can also work with n = pm, where
p is a prime and m is a positive integer, but the math gets a little ugly and complicated in
explaining how it works, so we won’t go into it here.

As a short example of finite fields, we can check to see if (Z7,+,×) satisfies the desired
properties. Since normal addition and multiplication modulo 7 will work as expected, then
the only thing to check is to make sure that we have multiplicative inverses for everything
but 0. It should be easy to verify that

1× 1 ≡ 1 (mod 7)
2× 4 ≡ 1 (mod 7)
3× 5 ≡ 1 (mod 7)
6× 6 ≡ 1 (mod 7)

Therefore, all of the elements, except for 0, have multiplicative inverses, thus we indeed have
a finite field.

Finite fields are also called Galois fields, and the primary integer Galois fields are often
abbreviated as GF(n) = ({0, 1, . . . , n− 1},+,×), where n is an integer.

2.3.2 Finite Field Inverses
We have glossed over one last detail: how to calculate the multiplicative inverse of a finite
field, say, Zp? It turns out that there is a simple algorithm for calculating this — the Euclidean
algorithm. This algorithm wasn’t made to solve for these numbers, as Euclid lived long before
finite fields were conceived, but is instead an algorithm to compute the greatest common
divisor of two integers. In our case, we will use the Euclidean algorithm to calculate the GCD
of p and the number we wish to find the inverse of, say a. We should note that the GCD
should be 1, since p is supposedly prime.

Let’s define our goal a little more clearly before we get into the nitty gritty algorithm
itself. The multiplicative inverse of a will be some number a−1 such that

a× a−1 ≡ 1 (mod p)

Or, if we rewrite this in terms of normal integer operations, using the previous definition of
equivalence,

a× a−1 = 1 + kp
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where k is some other integer.
The Euclidean algorithm works by simply dividing numbers over and over, keeping track

of the remainder each time. In the case of a and p, we start by dividing p by a (although it
doesn’t really matter which we start with),

p = n0 × a + r0

where n0 is an integer (which we just throw away) and r0 is less than p and greater than or
equal to zero. This way, n− 1 is as big an integer as possible. If r0 = 0, then the problem is
that p is divisible by a, so p isn’t prime. (In the normal version of the algorithm where we
want the GCD, we would stop here and return a as the GCD, since it divides both a and p.)
Otherwise, we continue the algorithm by dividing a by r0:

a = n1 × r0 + r1

Again, n1 is just some integer, and r1 is the remainder (0 ≤ r1 < a).
We iteratively repeat this process until at some point we have the last two equations:

ri−1 = ni × ri + ri+1
ri = ni+1 × ri+1 + 0

In the normal algorithm, where we want the GCD, we just found it: ri+1. Since one of our
original numbers was prime, though, then the GCD, and hence ri+1, should be 1 (other-
wise, it wouldn’t be a prime number, so something would be wrong with the number of the
implementation of the algorithm).

How, then, do we get the inverse from this mess? Well, we know, from the second to last
step of the algorithm, by replacing ri+1 = 1, that

ri−1 = ni+1 × ri + 1

Rewriting this, we have
1 = ri−1 − ni+1 × ri

We can then use the previous equation in the algorithm, ri−2 = niri−1 + ri, to substitute in
the above for ri:

1 = ri−1 − ni+1 × (ri−2 − niri−1) = −ni+1ri−2 + ni+1niri−1

We then keep repeating the substitutions back up, eventually obtaining an expression for
1 = a× a−1 − kp.

Let’s run through a quick example by computing the inverse of 17 mod 31 using the
Euclidean algorithm:

31 = 1× 17 + 14
17 = 1× 14 + 3
14 = 4× 3 + 2
3 = 1× 2 + 1
2 = 2× 1 + 0

Just as we stated above, we start with the second to last equation and work our way
backward. To make the work a little easier to follow, we underline the next number to be
substituted:
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1 = 3− 2
1 = 3− (14− 4× 3) = −1× 14 + 5× 3
1 = −1× 14 + 5× (17− 1× 14) = 5× 17− 6× 14
1 = 5× 17− 6× (31− 1× 17) = 11× 17− 6× 31

This last equation is of exactly the correct form, revealing that 17−1 ≡ 11 (mod 31). We
can easily multiply these out to check our answers.

There are algorithms to keep track of these successive multiplications and combinations
as you go down the Euclidean algorithm so that you don’t have to “run backward” through
it. Such an algorithm, used to calculate inverses modulo p, is called an extended Euclidean
algorithm.

Cohen [2] gives one such algorithm (his Algorithm 1.3.6). This iterative algorithm takes
just a few steps (note that bxc means to convert x to an integer by rounding down, throwing
away any fractional part).

Extended Euclidean Algorithm. For the following, assume that we are computing the GCD
of two numbers, a and b. The output of the algorithm is three integers: u, v, and d, such that
d is the GCD of a and b, and u and v satisfy au + bv = d.

1. Set u← 1 and d← 0.

2. If b = 0, then set v← 0 and stop.

3. Set v1 ← 0 and v3 ← b.

4. If v3 = 0, then set v← (d− a× u)÷ b and stop.

5. Set q← bd/v3c and t3 ← d mod v3.

6. Set t1 ← u− qv1, u← v1, v1 ← t1, v3 ← t3.

7. Go to Step 4.

The proof that this algorithm correctly computes the desired numbers can be found in
Reference [2].

Finite fields are used quite often throughout cryptography. For example, Rijndael [3] (the
algorithm that makes up the Advanced Encryption Standard, AES) uses finite field arithmetic
for some of its calculations. In fact, Neal Koblitz has an entire book devoted to the connections
between algebra and cryptography [5].

Now that we have some mathematics under our belt, let’s review some cryptographic
schemes based on these principles.

2.4 Factoring-Based Cryptography

One very popular problem to use as the basis for cryptography is the factoring problem:
Given an arbitrary (and typically very large) number n, it is very difficult to calculate all of its
prime factors in a reasonable amount of time. The difficulty typically increases as the number
of prime factors shrinks, reaching the most difficult case when n is the product of two large
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primes. Several cryptosystems are based on the current knowledge that there is no very good
algorithm to calculate these prime numbers easily.

2.4.1 The RSA Algorithm
The RSA algorithm, first published in the 1970s by Ronald Rivest, Adi Shamir, and Leonard
Adleman, remains the most popular algorithm currently in use whose security is based on
the factoring problem.

Specifically, RSA is based on a particular assumption. First, assume p and q to be very
large prime numbers (many hundreds of digits long). If we let n = pq be their product, then
we assume that, knowing n, it is very difficult to derive p and q. The larger the values of p
and q, theoretically, the more difficult it is to factor n.

The trick is to use some number theory principles to form a way to encode information
using these numbers. RSA works by the following method:

1. Let n = pq, where p and q are two distinct, large prime numbers.

2. Calculate t = φ(n) = (p− 1)(q− 1), which is the Euler totient of n.

3. Let e be a positive integer, greater than 1 and less than t, that is relative prime to t.
Mathematically, e ∈ Z, 1 < e < t, gcd(e, t) = 1. One way to do this, for example, is to
make e also be prime.

4. Calculate d = e−1 in Ft, that is, such that ed ≡ 1 (mod t).

Now, these numbers we have calculated, e and d, have an interesting property. Assume we
have a message, M, represented as an integer less than n. Assuming M and n are relatively
prime1, we can derive that

Med ≡ Mde ≡ Mt+1 ≡ M1 ≡ M (mod n)

Why does this work? It’s just using Euler’s totient theorem (specifically, the last corollary).
Here, t is the totient of n, and we know that ed ≡ 1 (mod t) from the construction of e and d.
The last corollary from Euler’s theorem lets us state that

Mde ≡ M1 (mod n)

The significance is that if we represent our message as an integer, then we can use e as an
encryption exponent, and d as a decrypting exponent, and have ciphertext

C ≡ Me (mod n)

We will then be able to calculate back the plaintext

M ≡ Cd ≡ Med (mod n)

The real slickness comes in the fact that we can have anybody know e and n, so that they
can encrypt messages, but it is extremely difficult to compute d knowing these two numbers
without being able to factor n. Most proposed methods of breaking this algorithm simply
involve factoring n to obtain p and q, so that the totient can be calculated.

1This is very likely, though it is possible to prove the statement without this assumption by invoking the
Chinese Remainder Theorem, which I am leaving out for brevity.



Chapter 2 Number Theoretical Ciphers 42

We now use the pair (e, n) as the public key and the pair (d, n) as a private key.
Let’s do a quick example of some cryptography using RSA. Let’s say p = 11 and q = 17,

two prime numbers. In real-life scenarios, we would have these numbers be hundreds of
digits long; otherwise, factoring the resultant product would be very easy. For this case, we
can see that n = 11× 17 = 187, and t = φ(187) = 10× 16 = 160. Let’s pick e to be a nice
prime number, say, 3.

Now, we can calculate d = 3−1 using the extended Euclidean algorithm from before,
getting the result d = 107.

Let’s encrypt our message. Here, consider our message to be encoded as the number 15
(for example, it could be the 15th letter of the Latin alphabet, O). It should be easy to see
that 153 = 3, 375 ≡ 9 (mod 187), so that our encrypted number is C = 9. Going the other
way is a bit trickier. We don’t really want to multiply 9 by itself 107 times. It turns out
there is a shortcut, using the binary representation of 107, that is to say, representing 107 as
the sum of powers of 2. In binary, 107 is 1101011, meaning 107 = 26 + 25 + 23 + 21 + 20 =
64 + 32 + 8 + 2 + 1. We can then write

9107 ≡ 964+32+8+2+1 (mod 187)

It’s easy to see that 91 = 9, thus we have

9107 ≡ 964+32+8+2 × 9 (mod 187)

From the last equation, we know that 91 ≡ 9 (mod 187), so then 92 ≡ (91) × (91) ≡
9× 9 ≡ 81 (mod 187), and we have

9107 ≡ 964+32+8 × 81× 9 (mod 187)

Even though we don’t have a 94 term, we will go ahead and calculate the value for it anyway,
by taking 94 = 92 × 92 ≡ 81× 81 ≡ 16 (mod 187). Repeating again, we know that 98 =
94 × 94 ≡ 16× 16 ≡ 69 (mod 187). So far, we then have

9107 ≡ 964+32 × 69× 81× 9 (mod 187)

Repeating again, we have 916 = 98 × 98 ≡ 69× 69 ≡ 86 (mod 187). But we have no 916

term, so we repeat, getting 932 = 916 × 916 ≡ 86× 86 ≡ 103 (mod 187). We then have, so
far

9107 ≡ 964 × 103× 69× 81× 9 (mod 187)

Finally, we can calculate 964 = 932 × 932 ≡ 103× 103 ≡ 137 (mod 187), giving us

9107 ≡ 137× 103× 69× 81× 9 (mod 187)

Not much of a shortcut is left here, so we just multiply it out and take the remainder, with
the result:

9107 ≡ 137× 103× 69× 81× 9 ≡ 15 (mod 187)

Therefore, the decryption worked, since Cd ≡ M ≡ 15 (mod 187).

2.5 Discrete Logarithm-Based Cryptography

From high school mathematics, we might recall that a normal logarithm takes an exponential
and “reverses” it, so that if we know that 10x = 100, then we can take the logarithm of both
sides to know that x = log 100.
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The discrete logarithm has the exact same goal, except instead of acting on continuous
numbers, such as the reals or the complex numbers, we are concerned with solving algebraic
equations of the form

ax = b

where a and b are known elements of a finite field F (instead of < or C), with ax representing
a operating on itself x times with the field operation. Solving for x is known as “calculating
the discrete logarithm.”

Another difference between the continuous and the discrete logarithm is that there are
known, simple formulas to compute arbitrary logarithms of real-valued or complex-valued
numbers. There is currently no known way to easily solve the discrete logarithm problem
for x even if a and b are known. In fact, the difficulty of this problem is such that many
cryptosystems rely on the difficulty of calculating discrete logarithms for their security.

2.5.1 The Diffie-Hellman Algorithm
Probably one of the simplest and most widely used cryptosystems that relies on the discrete
logarithm being hard is the Diffie-Hellman Key Exchange Protocol.

Key exchange algorithms, in general, suffer from a fatal flaw. If we have a foolproof,
secure way to exchange a key between two users, then why not just exchange the message
we want to send through this channel? Normally, this is simply because the key is a small,
fixed-size object, and only has to be exchanged once. But any messages may not have these
properties.

Furthermore, we may not have any way of securely communicating a key! Diffie and
Hellman devised a way for two parties to securely acquire the same key over an insecure
channel, where anyone could be listening.

Let’s say we have two parties communicating, A and B.

1. A and B agree on a finite field F, as well as a generator g, which are both publicly
known.

2. A picks a secret integer a, and B picks a secret integer b.

3. A sends to B (in the open) the number ga computed in F.

4. B sends to A (in the open) the number gb computed in F.

At the end of this exchange, A can compute (gb)a = gab in F, and B can compute (ga)b = gab

in F as well, so they both share a secret gab known only to each other. Anybody listening
would know g, F, ga, and gb, but thanks to the discrete logarithm being difficult, knowledge
of ga and gb does not let any listener easily derive either a or b, and the properties of the
fields do not allow one to use both ga and gb to easily calculate gab either.

2.6 Elliptic Curves3

There has been a significant trend in cryptography over the last few years toward elliptic
curve-based algorithms, and away from normal (integer-based) number theoretic algorithms.
Using elliptic curve cryptography gives us one primary advantage over the previous number

3This section is even more optional, as the material is a bit more abstract and advanced.
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(a) Elliptic curve in <
representing the equa-
tion y2 = x3 − 3x + 3.

(b) Elliptic curve in <
representing the equa-
tion y2 = x3.

(c) Elliptic curve in <
representing the equa-
tion y2 = x3 − x.

Figure 2-4 Elliptic curves in <.

theoretic methods: We can use much smaller numbers (by an order of magnitude) and achieve
the same level of security. Smaller numbers mean less to transmit, and fewer operations to
manipulate them. For example, 2048- and 4096-bit moduli are common for RSA, compared
to the 256- and 384-bits common for the size of prime number p of the underlying field in
elliptic curves.

This will be a very elementary go-through of very basic elliptic curve theory. For a more
thorough look, see References [10], [11], and [13].

Broadly speaking, elliptic curves are sets of points formed by equations that are quadratic
in the y-term and cubic in the x-term. These equations, in the most general form, are repre-
sented by the points (x, y) that satisfy the general equation:

ax3 + bx2y + cx2 + dxy2 + exy + f x + gy3 + hy2 + iy + j = 0

where x and y are variables ranging over fields (usually the rationals, the reals, complex
numbers, or a finite field), and a, b, . . . , j are elements of the same field. However, as will
be explained shortly, there is always an additional point, often called the point at infinity,
denoted ∞ [14].

We are usually not concerned with every type of elliptic curve. We want curves that
are easier to manipulate, since we will be using them for cryptographic and cryptanalytic
algorithms; the preceding form is a bit unwieldy for easy use. As such, we are concerned
with elliptic curves that are simplified in what is called the Weierstrass form of an elliptic
curve [13]:

y2 = x3 + ax + b

Not all elliptic curves in all fields can be represented in this form, but the simplicity of this
form makes up for it. The restriction the form makes on the underlying field is that the field
cannot have a characteristic of 2 or 3, because in those fields, division by 2 or 3, respectively,
is equivalent to dividing by 0 in normal arithmetic, and we need to divide by 2 and 3 to
construct the Weierstrass form.

Figure 2-4 shows some elliptic curves plotted in <. Note how there are three different
shapes of these elliptic curves. The shape of the curve is dependent on the values of a and
b. If 4a3 + 27b2 > 0, then the curve will be shaped like Figure 2-4(a). If 4a3 + 27b2 = 0, then
the curve will be shaped like Figure 2-4(b); however, in this case, we have a double or even
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triple root, which tends to spoil some of the mathematics. We don’t consider this case when
constructing any of our algorithms. Finally, if 4a3 + 27b2 < 0, then the curve will be shaped
as in Figure 2-4(c).

2.6.1 Addition of Points
In order to do many of the elliptic curve cryptographic algorithms, we need to have some
way to use these curves. In fact, we are actually going to perform operations on the points
that satisfy the curve equation.

We will do this by defining operations on the points. First, assume that a point is repre-
sented by its coordinates, P = (x, y). We want to define the negative to a point by negating
the y component (that is, taking 0− y in the appropriate field), so that −P = (x,−y).

We also want to define the addition of two points. Assume that we have two points,
P = (x1, y1) and Q = (x2, y2). Graphically, we want to calculate P + Q by the following
construction:

1. Draw a line PQ through P + Q.

2. There will be a third intersection of the line PQ with the elliptic curve, say, R.

3. The sum of the two points is then defined to be the negative of the third intersection,
so that P + Q = −R.

P

Q

− (P + Q)

P + Q

Figure 2-5 Elliptic curve addition of two points, P and Q.

This definition of addition isn’t too difficult to grasp. But as we can see in graphs of the
curve, such as in Figure 2-5, we have some difficulties. What if we add together two points
that are inverses of each other, that is, P + (−P)? Graphically, this creates a vertical line.

This is where the point at infinity we mentioned comes into play. Graphically speaking,
we want to include the “top” of the y-axis as a virtual point on the curve, so that the vertical
line “intersects” this point ∞. When we work with non-graphically representable elliptic
curves, such as those on finite fields, we merely have to treat the point at infinity as a construct
that helps us deal with these special cases.

We can also see that this point, given our usage thus far, fulfills the role of the algebraic
identity, if we consider the points on the elliptic curve together with addition as a potential
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group. This is exactly what we want! We already have that P + (−P) = ∞. It should also
make sense that ∞ + ∞ = ∞, as well as ∞ = −∞. By our construction, we can also see that
P+∞ is found by drawing a vertical line through P, and finding the third intersection, which
will be −P. We take the inverse of −P, which is P, and thus P + ∞ = P.

For more generic groups, we add this point at infinity to the potential group, with the
previous properties defined, since we can’t have a more drawing-focused version — it’s not
very easy to “draw” lines if our field is the integers 0–12.

Now, let’s refine our above definition of addition of points to be more algebraically
generic. When we draw a line, that normally means taking the two points and writing
an equation expressing a linear relationship between the two points. Finding the third in-
tersection is a matter of solving a system of two equations (one linear, one cubic) and two
unknowns, which it turns out has a general solution in a field.

For the following calculation of P + Q, assume that we have an elliptic curve represented
by the points satisfying the equation y2 = x3 + ax + b in some field F, with P = (x1, y1) and
Q = (x2, y2).

1. Check the special case P = −Q, in which case P + Q = ∞.

2. Check the other special case P = Q. In this case, our equation of y = mx + c is tangent
to the curve (intersects, but does not pass through). From calculus, we can calculate the
derivative via implicit differentiation of the curve at P as the slope of the tangent curve,
which will be (3x2

1 + a)× (2y1)
−1. Be very careful here: We are calculating the inverse

of 2y1 in the field; this does not mean division of integers or real numbers.

3. If P 6= Q, then we can calculate the slope the old-fashioned way: m = (y2 − y1)× (x2 −
x1)
−1 (“rise over run,” but in a field). Again, be careful, since we are not necessarily

doing normal division.

4. We now need to calculate the value c (our y intercept). We have two equations:

y2 = mx2 + c (2.1)

y1 = mx1 + c (2.2)

We can solve for c by taking twice the first equation and subtracting the second equa-
tion, that is, 2× Equation (2.1)− Equation (2.2), which gives us c = 2y2 − 2mx2 − y1 +
mx1.

5. We now want to solve for P + Q = (x3, y3) on the curve, thus we have two equations:

y = mx + c (2.3)

y2 = x3 + ax + b (2.4)

Substituting the first into the second, we get that (mx + c)2 = x3 + ax + b, or x3 −
m2x2 + (a− 2mc)x + (b− c2) = 0. Now, this is not too much fun to factor. However,
some basic algebra might conjure up the fact that the x2 coefficient is the negative of
the sum of the three solutions of the equation. Since we already know two of the
solutions (they had better be x1 and x2!), we can calculate −m2 = −x3− x2− x1, giving
us x3 = m2 − x2 − x1. Plugging this into the above equations will reveal that the other
coefficients come out as they should.
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To calculate y3, we use the fact that y3 = mx3 + c and that we know what x3 and c are.
Since we had to calculate x3 anyway, we’ll just use that value, but we can simplify the
c term a little. Plugging in mx3 + c for y3, we get

y3

= mx3 + 2y2 − 2mx2 − y1 + mx1

= m(x3 − 2x2 + x1) + (y2 − y1) + y2

= m(x3 + (x1 − x2)− x2) + (y2 − y1) + y2)

= m(x3 − x2) + (y1 − y2) + (y2 − y1) + y2

= m(x3 − x2) + y2

Thus, we have found that

P + Q = (x3,−y3) = (m2 − x2 − x1, m(x2 − x3)− y2)

This addition procedure has identical properties to the above geometrical construction —
it doesn’t matter which point is “first”: P + Q = Q + P. We also know that we have an
identity element of ∞. It also turns out that if we have three points, say P, Q, and R on the
elliptic curve, then we are guaranteed that (P + Q) + R = P + (Q + R), so that addition of
points on the elliptic curve is associative. This fact is non-trivial to prove, thus I refer the
reader to Reference [13] for more details.

Since we have all of these properties, we find that the elliptic curve points, together with
addition, form an abelian group, often denoted as (E(F),+), where F is the field that the
coordinates for the points on the elliptic curves come from.

Let’s do a quick example of the addition of two rational points, so that we can make
sure that we have the concept down (and also as a simple test case for any computer im-
plementation of elliptic curve point addition). Our curve will be defined by y2 = x3 − 25x
(therefore, a = −25, b = 0), with two points P = (x1, y1) = (−4, 6) and Q = (x2, y2) =
(1681/44,−62279/178).

Following the steps of the algorithm, we note that it does not fall into the cases where
P = Q or P = −Q, so we proceed to Step 3 — calculating m. For the rational numbers, the
multiplicative inverse is found just by flipping the numerator and denominator, thus

m =
y2 − y1

x2 − x1
=

6 + 62,279
178

−4− 1,681
44

= −1, 393, 634
165, 273

Step 4 was used just for the purposes of demonstration, so we skip ahead to the end of
Step 5 and note that

x3 = m2 − x2 − x1 =

(
−1, 393, 634

165, 273

)2
+ 4− 1, 681

44
=

44, 348, 169, 325, 919
1, 201, 867, 239, 276

and
y3 = m(x3 − x2) + y2

. . . I’m just going to leave out the calculation of those huge numbers and tell you that the
answer is

y3 =
2, 831, 284, 656, 048, 990, 661

9, 028, 918, 374, 402, 834
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Trust me. Or better yet, don’t trust me, and verify yourself.
One concept that we introduced in the addition formulation above is that we can add a

point to itself, that is, calculating P + P. We could even add a point to itself multiple times,
getting P + P + P, and so forth. Since we have no concept of multiplying points by each
other, we can use the notation n P to mean “add n P’s together” (which is n − 1 addition
operations), so that 0P = ∞, 1P = P, 2P = P + P, 3P = P + P + P, and so forth.

Taking a closer look at the previous example, you might note that Q = 2P, and therefore
the result is P + 2P = 3P.

Some of our algorithms we will be developing later involve computing very large mul-
tiples of points. The above construction doesn’t seem to lend itself well to computing, say,
1048577P. It turns out we can use a shortcut based on powers of two. Once we have com-
puted P + P = 2P, we can easily calculate 2P + 2P = 4P. And then, in a single additional
operation, we have 4P+ 4P = 8P, and so forth. Therefore, the trick is to take the multiple that
we want and to express it as a sum of powers of two. Once we have such a representation,
we can simply calculate each multiple of P that is a power of two and add them together. We
can save even more time by caching intermediate values.

Thus, in our above example, we can write 1, 048, 577 = 1, 048, 576+ 1 = 220 + 20, meaning
that 1, 048, 577P = (220 + 20)P = 220P + P. It takes 20 point-additions to calculate 220 P, and
one final one to add in the last P, for a total of 21 additions. That’s definitely a far cry less
than adding P to itself 1,048,576 times.

2.6.2 Elliptic Curve Cryptography
Any operation, including cryptography, that can be performed on integers or any other type
of number can also be applied to points on an elliptic curve. There are two challenges to
overcome: How do we represent information as points on an elliptic curve, and how do we
adapt our operations to be more tailored toward elliptic curves?

To answer the first question, I take the following construction from Reference [13]. As-
sume that we have an elliptic curve in a finite field Fp, represented by the equation y2 =
x3 + ax + b. First, we represent our message as an integer m between greater than or equal to
0 and less than p/100. We will then try up to 100 points on the elliptic curve to represent the
message, starting with j = 0:

1. Let xj = 100m + j.

2. Compute u = x3
j + axj + b. The value of u may end up being our yj value, or help us to

find one.

3. Check to see if u(p−1)/2 ≡ 1 (mod p). If not, then go back to Step 1. If the above
congruence is true, then u is a square in Fp, so yj ≡

√
u (mod p).

4. If p ≡ 3 (mod 4), we calculate a square root of u, and hence yj, with u(p+1)/4 mod p.

5. If p ≡ 5 (mod 8), then we calculate the square root by calculating u(p−1)/4 mod p. If
this is +1, then the square root is yj ≡ u(p+3)/8 (mod p). Otherwise (if the calculated
number is −1), then yj ≡ 2u · (4u)(p−5)/8 (mod p) [2].

6. If p ≡ 1 (mod 8), then we calculate a square root of u as well, but it is quite a bit
more involved. Cohen [2] recommends using Shanks’s algorithm [9], even though it is
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probabilistic. See [2, 9] for more details, but if you don’t want to bother with this case,
you can just go back to step 1 and try the next value of j.

(Note that p will never be congruent to 2 or 4 mod p, since that would mean that 2
would be a factor of p, which is not possible because p is prime.)

After we have represented a message as a point, we can then perform operations on it,
similar to a normal additive or multiplicative group. Instead of using exponentiation by
integers, as we did for finite fields over integers, we will instead use addition on the points,
that is, multiplying points by integers.

2.6.3 Elliptic Curve Diffie-Hellman
A very commonly used elliptic curve cryptographic algorithm is the Diffie-Hellman key ex-
change, but using elliptic curves instead of normal finite fields.

In this variant, Alice and Bob both agree on an elliptic curve to operate with, over the
same finite field (usually Fp, where p is a large prime). They also agree on a particular point,
say P. Just as before, they both choose secret integers a (for Alice) and b (for Bob).

1. Alice sends Bob a P.

2. Bob sends Alice b P.

Since n P is shorthand for “add n copies of P together,” then we know that b(a P) =
ba P = ab P and a(b P) = ab P, so Alice and Bob can both compute ab P. Furthermore, only
Alice and Bob can compute these numbers.4

2.7 Summary

This chapter covered a great deal of material fundamental to cryptography and cryptanalysis.
We studied the basics of probability, which are critical in many types of cryptanalytic

attacks. (As we shall see, many attacks are probabilistic in nature, relying on intricate chains
of events to work out.)

We then explored algebra, and number theory, including elliptic curves. This material is
critical to public-key cryptographic algorithms (such as RSA) and key exchange algorithms
(such as Diffie–Hellman), which are often based on these simple mathematical constructs.
In the next chapter, we also use these concepts with algorithms designed to compromise
public-key cryptographic and key exchange systems.

4When actually implementing this algorithm, we need to be fairly careful about our choices of P, the
curve, as well as the field. For more information, see, for starters, References [6] and [13].
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Exercises

Exercise 1. Write a program to calculate the inverse of a number modulo another number,
p, by implementing the extended Euclidean algorithm.

Exercise 2. Write a program that adds two points on an elliptic curve in the standard Galois
field of size p (Zp), where p is a prime number.

Exercise 3. Extend your work from the previous exercise to include calculating large multi-
ples (tens of digits) of points.

Exercise 4. Write a program that encodes an ASCII text message as a point on an elliptic
curve.
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CHAPTER

3
Factoring and Discrete

Logarithms

The previous chapter used a hefty dose of mathematics to develop some nice cryptographic
algorithms, which are still used today. Now, we are going to look at methods used to break
these algorithms.

To quickly review from the end of the last chapter, factoring and discrete logarithms rep-
resent two classes of problems of growing importance in cryptanalysis. A growing number
of ciphers rely on the difficulty of these two problems as a foundation of their security, in-
cluding number theoretic ciphers such as RSA and algebraic ciphers such the Diffie-Hellman
key exchange algorithm. The methods themselves aren’t secure; they rely on the fact that
both factoring and the discrete logarithm are difficult to do for very large numbers. To date,
no methods are known to solve them very quickly for the key sizes typically used.

The algorithms here may not be suitable for breaking many in-use implementations of
algorithms like RSA and Diffie-Hellman, but it is still important to understand how they
work. Any future developments in the fields will likely build on this material.

3.1 Factorization

Factorization refers to the ability to take a number, n, and determine a list of all of the
prime factors of the number. For small numbers, we can just start going through the list
integers and seeing if they divide into n. However, this method doesn’t scale well, since the
numbers we are often concerned with are hundreds of digits long — of course, these numbers
are hundreds of digits long merely because that is the time-security tradeoff point, since the
algorithms presented here start to drag their feet, so to speak, around that point.

In the previous chapter we learned about RSA, which uses exponentiation of numbers by
public and private exponents. If we recall, the first step in the RSA algorithm to create these
exponents is to construct a number n = pq, where p and q are both large prime numbers.
Since we know p and q, we can calculate the totient of n, φ(n) = (p− 1)(q− 1), which we
then use to find two numbers, e and d, such that ed ≡ 1 (mod (p− 1)(q− 1)). The numbers e
and n will be made public and can be used to communicate securely with anyone who knows
d and n. However, if anyone were to be able to factor n into its two prime factors, then they
could easily calculate d using the extended Euclidean algorithm (as that is exactly how d was
originally derived), allowing them to read any messages encrypted with e and n.
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RSA is therefore very reliant on factoring large values of n to be a difficult problem, or
its security will be compromised. The following sections discuss the fundamental algorithms
for factoring numbers.

Note that there are, theoretically, other ways to break RSA. For instance, since an attacker
has access to the public key, (e, n), then they could take a message (perhaps a very cleverly
constructed message) and encrypt it, knowing that when this encrypted message is encrypted
again with the private key, and therefore exponentiated by d modulo n, there may be some
clever way to derive d. However, at this time, no such method is known.

3.2 Algorithm Theory

Just as this is not a book on mathematics, it is also not a book on the algorithmic theory.
Hence, we will not require the reader to have a great deal of understanding of the methods
used to determine the exact running time and storage requirements of any of the algorithms
we will be discussing. However, it is important to have a decent understanding of how the
various algorithms compare to each other.

Algorithmic running time and storage space are often written in terms of order, also
known as “Big-Oh” notation, like O(1) and O(n2), where n is usually our input size. For an
algorithm to have a worst-case running time of, say, O(n), means that, roughly speaking, the
algorithm will terminate within some fixed multiple of n steps (i.e., proportional to the size of
the input). Naturally, if an algorithm has, say, O(n2) storage requirements in the worst-case
scenario, it will require, at most, some fixed multiple of n2 (i.e., proportional to the square of
the size of the input).

For example, suppose we devised a method for testing to see if a number is even by
dividing it by 2, using the long-division method everyone learned in elementary school. For
the sake of this, and other algorithms in this chapter, we let n be the size of the number in
terms of digits. For example, 12345 has length 5 in decimal, or length 14 in binary; the two
numbers will always differ by about 1/ log 2 ≈ 3.322, because of using logarithms1 to convert
bases, thus it doesn’t affect our running time to use one or the other, since an order expressed
in one will always be a constant multiple of the other, and hence have the same order in
Big-Oh notation. In this book, we typically use key size in terms of the number of bits.

The previous simple division algorithm has a running time of O(n) and storage require-
ments of O(1). Why? Because the standard division algorithm we learn early on is to take
each digit, left to right, and divide by 2, and then take the remainder, multiply by 10, and add
it to the next digit, divide again, and so on. Each step takes about three operations, and there
will about the same number of steps as there are digits, giving us about 3n operations or
thereabouts — this is a simple multiple of n, thus our running time is O(n). Since we didn’t
have to keep track of more than one or two variables other than the input, we have a constant
amount of storage. Algorithms with O(n) running time are typically called linear algorithms.

This is a suboptimal algorithm, though. We might also recall from elementary school that
the last digit can tell us if a number is even or odd. If the last digit is even, the entire number
is even; otherwise, both are odd. This means that we could devise an O(1) even-checking
algorithm by just checking the last digit. This always takes exactly two operations: one to
divide, and one to check if the remainder is zero (the number is even) or one (the number is
odd). Algorithms that run in less than O(n) time are called sublinear.

1As my friend Raquel Phillips pointed out, “logarithm” and “algorithm” are anagrams!
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Linear / Polynomial
Subexponential

Exponential

Figure 3-1 The running time of algorithms for order O(n) (linear), O(eln n ln ln n)
(subexponential), and O(2n) (exponential) for various values of n.

Who needs all that input anyway, right? It’s just taking up space.
If an algorithm runs in O(np) time, where p is some fixed number, then it is said to be

a polynomial-time algorithm. This is an important class, often denoted simply as P. The
reason this class is important is because it is merely a polynomial-time algorithm — other
worse-performing classes of algorithms exist, known as superpolynomial-time algorithms.
For example, the algorithms that can be bounded in O(an) time (for some number a) are called
exponential-time algorithms. In general, superpolynomial- and exponential-time algorithms
take significantly longer to run than polynomial-time algorithms. Algorithms that take less
than an exponential of n to finish are called subexponential. Figure 3-1 shows the running
time of the various classes of algorithms.

There is also another way to analyze an algorithm: by its storage complexity. Storage
complexity is, for most of the algorithms we are considering, not too much of a concern.
However, requiring large amounts of storage can quickly become a problem. For example,
we could just pre-compute the factors for all numbers up to some extremely large value
and store this, and then we would have a very small running time (only as long as it takes to
search the list) for finding the factors of a number. However, the pre-computation and storage
requirements make this technique silly.

We will see this kind of concept used in a more clever way in Chapter 5.

3.2.1 Notation
There is another important notion in understanding algorithms: writing them out clearly,
and unambiguously. For doing so, authors typically take one of three approaches: picking a
programming language du jour to write all examples in, inventing a programming language,
or writing everything in various forms of pseudocode (writing out the instructions in some
mesh of natural language and a more formal programming language).
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The first approach, picking a popular or well-known language, has an obvious disad-
vantage in that it dates a book immediately: a book written 40 years ago might have used
FORTRAN or ALGOL to implement its algorithms, which would be difficult for many read-
ers to understand. The second approach can be all right, but it requires that the reader learn
some language that the author thinks is best. This approach can have mixed results, with
some readers distracted so much by learning the language that they do not comprehend the
text.

The final approach is often used, especially in abstract books. While usually very clear, it
can sometimes be a challenge for a programmer to implement, especially if important details
are glossed over.

The approach we use in this book is to have a combination of pseudocode and writing
out in an actual programming language. The pseudocode in this and the following chapters
is very simple: I merely state how a program would operate, but in mostly plain English,
instead of some abstract notation. The intent of this book is not to alienate readers, but to
enlighten.

For some examples, I would like a reader to be able to easily see an algorithm in action
and to have some kind of source code to analyze and run. When these situations arise, I
implement in a language that, in my opinion, has a complete, free version available over the
Internet; is easy to read even if the reader is not fluent in the language; and in which the
reader won’t get bogged down in housekeeping details (like #include <stdio.h>-like state-
ments in C, tons of import java.util.*; statements in Java, etc.). A few languages fulfill these
requirements, and one that I like in particular is Python.

If you are not familiar with Python, or Python is long forgotten in the tomes of computing
history when this book is read, the code we show in Python should be simple enough to easily
reproduce in whatever language you are interested in.

3.2.2 A Crash Course in Python
We shall start with a very, very short course in Python syntax and a few tricks. This is by no
means representative of all of Python, nor even using all of the features of any given function,
but merely enables us to examine some simple programs that will work and are easy to read.

A typical Python program looks like like that shown in Listing 3-1.

x = 5

y = 0

print("x =", x, " y = ", y)

for i in range(0, 4):

y = y + x

print("x =", x, " y =", y, " i =", i)

print("x =", x, " y =", y)

Listing 3-1 A simple program in Python.

The output of the program in Listing 3-1 will be
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x = 5 y = 0

x = 5 y = 5 i = 0

x = 5 y = 10 i = 1

x = 5 y = 15 i = 2

x = 5 y = 20 i = 3

x = 5 y = 20

We don’t want to get bogged down in too many details, but a few things are worth noting.
Assignments are done with the simple = command, with the variable on the left and the value
to put in on the right.

Program structure is determined by white space. The for loop’s encapsulated code is
all the code following it with the same indentation as the line immediately following it — no
semicolons or braces to muck up.

The for loop is the most complicated thing here. It calls on the range function to do
some of its work. For our uses, range takes two arguments: the starting point (inclusive)
and the ending point (not inclusive), so that in Listing 3-1, range(0, 4) will expand to [0,
1, 2, 3] (the Python code for an array).

The for loop uses the in word to mean “operate the following code one time for each
element in the array, assigning the current element of the array to the for-loop variable.”
In Listing 3-1, the for-loop variable is i. The colon is used to indicate that the for line is
complete and to expect its body immediately after.

The only other thing to mention here is the print statement. In the case I provided
above, we can print a literal string, such as "x =", or a value (which will be converted to a
string). We can print multiple things (with spaces separating them) by using a comma, as is
shown above.

Let’s go through one more quick example to illustrate a few more concepts.

def factorial(n):

if n == 0 or n == 1:

return 1

else:

return n * factorial(n - 1)

x = 0

f = 0

while f < 100:

f = factorial(x)

print(f)

x = x + 1

Listing 3-2 A factorial function written in Python.

The program shown in Listing 3-2 will have the following output:
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1

1

2

6

24

120

This program gives a taste of a few more tools: functions, conditionals, and the while
loop.

Functions are defined using the def statement, as in the above example (its parameters
specified in parentheses after the function name). Values of functions are returned using the
return statement.

Conditionals are most commonly performed using if statements. The if statement takes
an argument that is Boolean (expressions that return true or false), such as a comparison like
== (equals) and < (less than), and combinations of Booleans, combined using and and or.
There can be an optional else statement for when the if’s condition evaluates to false (and
there can be, before the else, one or more elif, which allow additional conditionals to be
acted on).

Finally, we have another loop, the while loop. Simply put, it evaluates the condition at
the beginning of the loop each time. If the condition is true, it executes the loop; if false, it
breaks out and continues to the next statement outside the loop.

Python automatically converts fairly well between floating point numbers, arbitrarily
large numbers, strings, and so on. For example, if we used the above code to calculate
factorial(20), we would simply obtain

2432902008176640000

Even though the size of the number is more than 32 bits, a typical machine integer, Python
automatically converts the values to these large-precision numbers as needed.

I’ll spread a little Python here and there throughout this and later chapters to have some
concrete examples and results. The rest of this chapter is devoted to algorithms for factoring
integers and solving discrete logarithm problems, of different complexities and speeds.

3.3 Exponential Factoring Methods

When we refer to the speeds of the factoring methods, we are usually concerned not so much
with the number itself, but with its size, typically in binary. For example, the number 700 (in
decimal) would be written in binary as

10 1011 1100

Thus, 700 takes 10 bits to represent in binary. In general, we can use the logarithm
function to calculate this. The base 2 logarithm calculates what power of 2 is required to get
the desired number. With the above example, we can calculate

log2 700 ≈ 9.4512
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We round this up to determine the number of bits needed to represent the number, which is
10 bits.2

Since, by nature, we do not know the actual number to be factored, but we can generally
tell the size of the number, this is how we categorize factorization algorithms. Categorizing
them by this method also lets us see how well the algorithms do when the numbers start to
get very large (hundreds or thousands of digits).

This chapter is concerned with exponential-time algorithms. As we defined earlier, this
means that the algorithm running time will be O(an), where n is the size of the number (in
bits) and a is some number greater than 1.

Exponential factoring methods are often the easiest to understand. Unfortunately, while
they are simple and often elegant, they are also incredibly slow. Nevertheless, some have
advantages over even some of the fastest algorithms in some circumstances.

3.3.1 Brute Force
Brute force algorithms are usually the simplest method to solve most problems with a known
set of solutions: just try every possible solution. Brute force’s motto is, if we don’t know
where to start, just start trying. Throw all of your computing power at the problem, and hope
to come out on top!

The natural way to brute force factors? Just try them all. Well, maybe not every number. If
you have divided a number by 2 and found it is not divisible, it’s fairly pointless to divide it
by 4, 6, 8, and all the rest of the multiples of 2. It is similarly pointless to divide by 3 and then
by 6, 9, 12, and the rest of the multiples of 3, and if we follow suit, then with the multiples of
the rest of the numbers we try.

Therefore, we will limit ourselves to merely trying all of the prime numbers and dividing
our target number by each prime. If the division succeeds (i.e., no remainder), then we
have a factor — save the factor, take the result of the division (the quotient), and continue the
algorithm with the quotient. We would start with that same factor again, since it could be
repeated (as in 175 = 5× 5× 7).

This technique provides an upper-bound on the amount of work we are willing to do: if
any technique takes more work than brute forcing, then the algorithm doesn’t work well.

An immediate assumption that many make when naively implementing this algorithm is
to try all prime numbers between 1 and n− 1. However, in general, n− 1 will never divide
n (once n > 2). As the numbers get larger, then n− 2 will never divide n, and so forth. In
general, the largest factor that we need to try is

√
n. Why? The simple reason is that if n

has a factor greater than its square root, it will have to have a factor less than its square root
as well; two numbers larger than its square root multiplied together will be larger than the
number itself! Therefore, searching up to

√
n will be sufficient for finding all the factors.

The only other small trick is the ability to find all of the prime numbers in order to divide
by them. Figure 3-2 shows an example of brute force factorization using such a list. Although
for smaller numbers (only a few digits), the list of primes needed would be small, it would
be prohibitive to have a list of all the prime numbers required for large factorization lying
around. Furthermore, even checking to see if a large number is prime can be costly (since it
would involve a very similar algorithm to that above).

The answer is that we would just hop through the list of all integers, skipping ones that
are obviously not primes, like even numbers, those divisible by three, and so forth. For more

2Sometimes, you may only have the natural logarithm (ln) or the base 10 logarithm (plain log). In these
cases, you can convert to the base 2 logarithm by using the equation log2(x) = log(x)/ log(2) = ln(x)/ ln(2).
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(5) 2431 ?
= 2× · · ·

(5) 2431 ?
= 3× · · ·

(5) 2431 ?
= 5× · · ·

(5) 2431 ?
= 7× · · ·

(3) 2431 ?
= 11× · · ·

⇒ 2431 = 11× 221

(5) 221 ?
= 11× · · ·

(3) 221 ?
= 13× · · ·

⇒ 2431 = 11× 13× 17

(5) 17 ?
= 13× · · ·

(3) 17 ?
= 17× · · ·

⇒ 2431 = 11× 13× 17× 1

⇒ 2431 = 11× 13× 17

Figure 3-2 Factorization of the number 2431 using brute force.

details on implementations and behavior of this algorithm, see Reference [7].
We leave it as an exercise to the reader to implement the brute force algorithm.

3.3.1.1 Analysis
In order to see how much time this takes to run, we need to know how many prime numbers
there are. We could simply count them, which would be the only exact method. But there
is a well-known rough approximation, saying that if we have a number a, then there are
approximately

a
ln a

prime numbers less than or equal to a. In reality, there are a bit more than this, but this
provides a good lower bound.

Another definition we need is n, the length of a (in binary digits). We can calculate this
as n = log2 a bits (binary digits).

The running time will then be one division operation per prime number less than the
square root of the number a, which has n/2 bits. Therefore, dividing by every prime num-
ber of less than

√
a will involve time complexity of about O(

√
a/ log(

√
a)), which, when

converted to terms of n (the number of bits), gives us

O

(
2n/2

n/2

)
= O

(
2n/2

n

)
The storage requirements for this are simply storing the factors as we calculate them, and

keeping track of where we are. This won’t take up too much space, thus we need not be
worried at this point.

As terrible as this may seem when compared to other algorithms in terms of time com-
plexity, it has the advantage that it always works. There is no randomness in its operation,
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and it has a fixed, known upper-bound. Few other algorithms discussed here have these
properties. Also, other algorithms are not guaranteed to find complete prime factorizations
(whereas this one does) and often rely on trial division to completely factor numbers less
than some certain bound.

3.3.2 Fermat’s Difference of Squares
A method attributed to Fermat in 1643 [7] uses little more than normal integer arithmetic to
siphon large factors from numbers. In fact, it doesn’t even use division3.

The algorithm works from a fact often learned in basic algebra:

(x + y)(x− y) = x2 − y2

for any integers x and y. Fermat theorized using this to factor a number: if we can discover
two squares such that our target number (a) is equal to the difference of the two squares
(x2 − y2), we then have two factors of the n, namely, (x + y) and (x− y).

Fermat’s method just tries, essentially, to brute force the answer by going through the
possible squares and testing them. The algorithm is written out concisely in Reference [15],
although I have changed some of the variable names for the following:

Fermat’s Difference of Squares. Take an integer, a, to factor. The goal is to calculate x2 and y2

so that (x + y)(x− y) = x2 − y2 = a. In the following, d = x2 − a (which should, eventually,
be equal to y2).

1. Set x to be
√

a, rounding up (the ceiling function).

2. Set t = 2x + 1.

3. Set d = x2 − a.

In the algorithm, d will represent x2 − a, the difference between our current estimate of
x2 and a, and thus will represent y2 when we have found the correct difference of the
squares. This means that d is positive (if a is not a perfect square in the first step) or
zero (if a is a perfect square).

Make t the difference between x2 and the next square: (x+ 1)2 = x2 + 2x+ 1, and hence
the difference is 2x + 1 to start with. The next square will be (x + 2)2 = x2 + 4x + 4,
which is 2x + 3 more than the last. Following this trend (which can be verified using
calculus), the difference between the squares increases by 2 each time.

4. (a) If d is a square (
√

d is an integer), then stop and go to Step 5, because the difference
is a square.

(b) Set d to d+ t. We are adding in the distance to the next x2 attempt to the difference
of x2 − a.
This works because we already have (x + c)2 − a (for some c, the current step),
and we wish to calculate [(x + c) + 1]2 − a = (x + c)2 + 2(x + c) + 1− a = (x +
c)2 − a + 2x + (2c + 1) = d + 2x + 2c + 1 , the next value of d. We use the value of
t to stand in for 2x + 2c + 1, which increases by 2 every time, since c increases by
1 with each step.

3Division by 2 in computers is different from normal division. With numbers written in binary, simply
removing the least significant bit is equivalent to dividing by 2. For example, 24 is 11000 in binary. If we
remove the last bit, we get 1100, which is 12 — the same result as dividing by 2.
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a = 88

1. x =
⌈√

88
⌉
(rounded up) = 10

2. t = 2 · 10 + 1 = 21

3. d = 102 − 88 = 12

4(a). d = 12 + 21 = 33 (representing x2 = 121, y2 = 33)

4(b). t = 21 + 2 = 23

4(a). d = 33 + 23 = 56 (representing x2 = 144, y2 = 56)

4(b). t = 23 + 2 = 25

4(a). d = 56 + 21 = 81 (representing x2 = 169, y2 = 81)

4(b). t = 25 + 2 = 27

5. x =
√

81 + 88 = 13

6. y =
√

81 = 9

7. x + y = 22, x− y = 4

Figure 3-3 Fermat’s difference of squares method for finding factors of 88.

(c) Set t to t + 2. The distance between the next pair of squares is increased by 2 each
time.

(d) Go to Step 4a.

5. Set x to
√

d + a. Since d = x2 − a, then x =
√

d + a.

6. Set y to be
√

d, since d = x2 − a is a perfect square, and is now our y2.

7. Return two factors, x + y and x− y.

For a simple example, Figure 3-3 shows this algorithm being run on the number 88.

3.3.2.1 Analysis of Fermat’s Difference of Squares
The running time of Fermat’s difference of squares method is on the order of

√
a running

time with constant space requirements. Although this algorithm provides essentially no
improvement to trial division, the concept it uses is a fundamental building block upon
which other factoring methods are built.

3.3.3 Pollard’s ρ
Pollard has come up with several very clever mechanisms for factoring integers, as well as
other ones we shall study below in this chapter.

Pollard’s rho (ρ) method works by finding cycles in number patterns. For example, using
the modular arithmetic from the previous chapter, we may want to successively square the
number, say, 2, repeatedly modulo 14. This would result in a sequence

2, 4, 8, 2, 4, 8, . . .
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This sequence repeats itself forever. Pollard figured out a way to have these sequences give
us clues about the factors of numbers.

We’ll show the algorithm, and then explain the nifty trick behind it.

Pollard’s ρ. Factors an integer, a.

1. Set b to be a random integer between 1 and a− 3, inclusive.

2. Set s to be a random integer between 0 and a− 1, inclusive.

3. Set A = s.

4. Set B = s.

5. Define the function f (x) = (x2 + b) mod a.

6. Let g = 1.

7. If g 6= 1, then go to Step 8.

(a) Set A = f (A).

(b) Set B = f ( f (B)).

(c) Set g = gcd(A− B, a).

(d) Repeat (go to Step 7).

8. If g is less than a, then return g. Otherwise, the algorithm failed to find a factor.

Why does this work? Well, the first leap of faith is that the function f (x) will randomly
jaunt through the values in the field. Although it is fairly simple (just a square with a constant
addition), it will, in general.

The second notion here is what is going on with the function calls. The value B is “mov-
ing” through the values of the field (values modulo a) twice as “fast” (by calling the function
f twice). This will give two pseudorandom sequences through the elements of the field.

Listing 3-3 shows a simple implementation of this program in Python, and Figure 3-4
shows an example run of the program.

The reason this algorithm is called the ρ algorithm is because, if drawn out on paper, the
paths of the two values, A and B, chase each other around in a way that resembles the Greek
letter ρ (see Figure 3-5).

3.3.3.1 Analysis of Pollard’s ρ

The Pollard ρ algorithm has time complexity of approximately O(n1/4) for finding a factor
and no significant amount of storage [15]. Completely factoring a number will take slightly
more time, but finding the first factor will usually take the longest.
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Step A B gcd(A-B, a)

0 2 2
1 7 52 1
2 52 85004 1
3 2707 89854 1
4 85004 200638 1
5 33783 133971 1
6 89854 29653 1
7 2850 183898 1
8 200638 145817 1
9 84202 114064 1

10 133971 186158 1
11 225161 69655 1
12 29653 212261 113

Figure 3-4 Pollard’s ρ factorization of 2,262,599, with b = 2, s = 2.

Figure 3-5 Figure showing the path of a run of the Pollard ρ algorithm. The path
will eventually loop back upon itself, hence the name “ρ.” The algorithm will detect
this loop and use it to find a factor.

# Euclidean algorithm for GCD

def gcd(x, y):

if y == 0:

return x

else:

return gcd(y, x % y)

# Stepping function

def f(x, n):

return (x * x + 2) % n

# Implements Pollard rho with simple starting conditions

def pollard_rho(a):

x = 2

y = 2

d = 1

while d == 1:

x = f(x, a)

y = f(f(y, a), a)

d = gcd(abs(x - y), a)

if d > 1 and a > d:

return d

if d == a:

return -1

Listing 3-3 Python code for Pollard’s ρ algorithm for factoring integers.
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3.3.4 Pollard’s p− 1
John M. Pollard also has another method attributed to him for factoring primes [12]. Pollard’s
p− 1 method requires that we have a list of primes up to some bound B. We can label the
primes to be, say, p1 = 2, followed by p2 = 3, and p3 = 5, and so on, all the way up to the
bound B. There are already plenty of lists of primes to be found on the Internet, or they
could be generated with a simple brute force algorithm as described above, since we don’t
need very many of them (only a few thousand in many cases).

The algorithm works by Fermat’s little theorem, that is, given a prime p and any integer
b, then

bp−1 ≡ 1 (mod p)

We want to find p such that p is a prime factor of a, the number we are trying to factor. If
L is some multiple of (p − 1), then p | gcd(bL − 1, a). The best way to try to get L to be
a multiple of (p− 1) is to have L be a multiple of several prime factors. We can’t compute
bL mod p, but we can compute bL mod a. The algorithm works by computing L = pe1

1 · · · p
ek
k

(more specifically, bL), where ei = b(log B)/(log pi)c, and trying to see if (bL − 1) and n have
common factors.

Pollard’s p− 1. Factors an integer, a, given a set of primes, p1, . . . , pk.

1. Set b = 2.

2. For each i in the range {1, 2, . . . , k} (inclusive), perform the following steps:

(a) Set e to be blog(B)/ log(pi)c (the logarithm, base 10, of B divided by the logarithm
of the i-th prime), rounded down.

(b) Set f to be pe
i (the i-th prime raised to the power of the above number).

(c) Set b = b f mod a.

3. Set g to be the GCD of a and b− 1.

4. If g is greater than 1 and less than b, then g is a factor of b. Otherwise, the algorithm
fails.

I won’t show an implementation of this algorithm, since it requires such a large list of
primes.

3.3.4.1 Analysis of Pollard’s p− 1
Pollard’s p − 1 algorithm runs in time relative to the size of the upper-bound B. For each
prime number less than B (≈ B/ ln B of them), we calculate e (assume this is negligible), then
f (this takes log2 e operations), and then b (this takes log2 f operations). This gives us a total
of a bit more than B ln B operations to complete. This, therefore, grows very large very fast,
in terms of the largest prime number we are concerned with.

One optimization to this can be to pre-compute the values of e and f , since they will not
change between runs, saving us a little bit of time.

3.3.5 Square Forms Factorization
A method of factoring based on square forms, to be discussed in this section, was devised by
Shanks in References [9] and [14].
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Before we dive in to the Square Forms Factorization method (SQUFOF), I’ll first set up a
little of the mathematics.

Let the ordered triple of integers (a, b, c) correspond to all values of

ax2 + bxy + cy2

for all integers x and y. We say that (a, b, c) represents some value m if, and only if, we can
find two values x and y such that ax2 + bxy + cy2 = m.

We say that two forms of (a, b, c) are equivalent if the two forms represent the same set
of numbers. One way in which this can be done is by a linear change of variables of x and y,
where x′ = Ax + By, y′ = Cx + Dy, and AD− BC = 1 or −1. For example, if A = 1, B = 3,
C = 1, and D = 4, then we would have x′ = x + 3y, y′ = x + 4y, and

ax2 + bxy + cy2

= a(x′ + 3y′)2 + b(x′ + 3y′)(x′ + 4y′) + c(x′ + 4y′)2

= ax′2 + 3ax′y′ + 9ay′2 + bx′2 + 7bx′y′ + 12by′2 + cx′2 + 8cx′y′ + 4cy′2

= (a + b + c)x′2 + (3a + 7b + 8c)x′y′ + (9a + 12b + 4c)y′2

For example, (1, 1, 2) and (4, 26, 29) are equivalent.
This has two implications: the two forms represent the same set of numbers, and their

discriminants of the form
D = b2 − 4ac

will be the same.
A square form is a form of (a, b, c), where a = r2 for some integer r — that is, a is a perfect

square.
We will want to find a reduced square form, similar to finding the smallest CSR earlier.

This is not hard if D < 0, but if D > 0, then we define a form as reduced if
∣∣∣√D− 2 |a|

∣∣∣ <
b <
√

D (here, the vertical bars indicate to take the absolute value of the number inside, i.e.,
throw away the sign).

The SQUFOF algorithm works by finding equivalent reduced forms related to the integer
we want to factor.

For more information on implementing the square form factorization, see, for example,
Stephen McMath’s SQUFOF analysis paper [9].

3.3.5.1 Analysis of SQUFOF
The SQUFOF algorithm is one of the most powerful yet. Given a number to factor, a, the
running time of the algorithm will be about a1/4. This is still exponential (in terms of the
digits of a), but a bit better than other methods.

3.3.6 Elliptic Curve Factorization Method
The elliptic curve factorization method (ECM) works similarly to Pollard’s p− 1 algorithm,
only instead of using the field of integers modulo p, we use an elliptic curve group based on
a randomly chosen elliptic curve. Since many of the same principles work with elliptic curve
groups, the idea behind Pollard’s p− 1 also works here. The advantage here is that we can
try multiple times, with a different curve each time, whereas with Pollard’s p− 1 algorithm,
you can only try once. ECM was originally developed by Lenstra [6].

As before, we assume that we have a list of all of the primes {2, 3, 5, . . . } stored as
{p1, p2, p3, . . . } less than some bound B.
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Elliptic Curve Factorization Method. The elliptic curve will be generated and used to try
to find a factor of the integer a. The elliptic curve operations and coordinates will be taken
modulo a.

1. Generate A and B as random numbers greater than (or equal to) zero and less than a.
Thus, we have an elliptic curve defined by y2 = x3 + Ax + B (modulo a).

2. Choose a random point on the elliptic curve, P, that is not the point at infinity. For
example, choosing a random positive integer x less than a, plugging it into x3 + Ax + B,
and solving for the square root will yield a y-value. (I show how to solve for the square
root in Chapter 2.)

3. Calculate g, the GCD of the discriminant, (4a3 + 27b2), and a. If by some odd chance
g = n, then generate a new A, B, and P, and try again. If g 6= 1, then it divides a, so it
is a factor of a, so the algorithm can terminate and return a.

4. Do the following operations for each prime p less than B (each of the pi values from
earlier):

(a) Let e = d(log B)/(log p)e. Here, we are taking the prime number and forming an
exponent out of it by the logarithm of the bound B and dividing by the logarithm
of p. The d e operators are called the ceiling function, so that you take the integer
closest to what is in between them, rounding “up” (taking the opposite action as
the floor function).

(b) Set P = (pe)P — that is, add P to itself pe times.
Here, we might find a factor, g, of a. How? Recall calculating the inverse of a
number (say, x) modulo a. We find a number, x−1, such that x−1x + kn = 1. But,
this operation only succeeds if the numbers are relatively prime. If we perform the
calculation (using one of the Euclidean algorithms), we will have also calculated
the GCD of x and a. If the GCD is not 1, then we have a factor of a! In that case,
we terminate the algorithm and return g, the GCD.

5. If we have failed to find a factor, g (via the GCD above), then we can either fail or try
again with a new curve or point, or both.

Furthermore, g is not guaranteed to be prime, but merely a factor.

3.3.6.1 Analysis of ECM
If p is the least prime dividing the integer a to be factored, then the expected time to find the
factor is approximately

e
√

2+ln p ln ln p(ln a)2

The first term in this will typically dominate, giving a number a bit less than ep.
In the worst-case scenario, when a is the product of two large and similar magnitude

primes, then the running time is approximately

e
√

1+ln n ln ln n
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This is going to be a bit less than en, but not so much. In both cases, the average and worst
case, these are still exponential running times.

3.4 Subexponential Factoring Methods

The previous factoring methods were all exponential in running time. There are known
methods that operate much faster (in subexponential time). However, these algorithms are
more complicated, since they all use really nifty, math-heavy tricks to start to chip away at
the running time and find factors fast.

Most subexponential factoring algorithms are based on Fermat’s difference of squares
method, explained above. A few other important principles are also used.

If x, y are integers and a is the composite number we wish to factor, and x2 ≡ y2 (mod a)
but x 6≡ ±y (mod a), then gcd(x− y, a) and gcd(x + y, a) are factors of a.

3.4.1 Continued Fraction Factorization
The continued fraction factorization method is introduced in Reference [10]. The following
explanation draws on this paper, as well as the material in References [9] and [15].

First, let’s learn some new notation. If we wish to convey “x rounded down to the nearest
integer,” we can succinctly denote this using the floor function, bxc. This means that b5.5c =
5, b−1.1c = −2 and b3c = 3, for example. I have avoided using this notation before, but it
will be necessary in the following sections.

One more quick definition. A continued fraction is a fraction that has an infinite repre-
sentation. For example:

1 +
1

1 + 1
1+ 1

1+···

Furthermore, a continued fraction for any number (say, c) can be constructed noting that
c = bcc+ c− bcc, or

c = bcc+ 1
1

c−bcc

Let c1 =
1

c− bcc . We stop whenever ci = bcic. If not, we continue computing ci+1 =
1

ci − bcic
.

After a few steps, c looks like

c = bcc+ 1
bc1c+ 1

bc2c+···

Furthermore, with a continued fraction form like the above (or written more compactly as
[c0, c1, . . . , ck]), we can find Ak/Bk, the rational number it represents, by the following method:

1. Let A−1 = 0, B−1 = 1, A0 = c0, B0 = 1.

2. For each i, compute Ai = ci Ai−1 + Ai−2 and Bi = ciBi−1 + Bi−2.

The above algorithm will eventually terminate if the number being represented is irra-
tional. Otherwise, it continues forever.
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Using this method, we can now compute quadratic residues, Qi — remainders when sub-
tracting squared number. The quadratic residues we are interested in are from A2

i − nB2
i =

(−1)iQi, representing the square of the difference between the form Ai/Bi and n. Taking this
formula modulo n, we get

A2
i ≡ (−1)iQi (mod n)

We will use the quadratic residues to derive a continued fraction sequence for
√

a, where
a is the number we wish to factor.

We need an upper-bound on factors we will consider, B. The algorithm for exploiting
this works by factoring each Qi as we calculate it, and if it is B-smooth (contains no prime
factors less than B), we record it with the corresponding Ai. After we have collected a large
number of these pairs, we look at the exponents of the factors of each Qi (modulo 2) and find
equivalences between them. These will represent a system of equations of the form:

x2 ≡ y2 (mod n)

When x is not equal to y, we use the same principle of Fermat’s difference of squares to factor
n.

The reason this works is that a square is going to have even numbers as exponents of
prime factors. If we have two numbers that when multiplied together (adding their expo-
nents) have even numbers in the exponent, we have a perfect square.

3.4.1.1 Analysis of CFRAC
Although the above work is fairly complex and involved, the above method saves an extraor-
dinary amount of time. Using the CFRAC method to factor an integer will yield a running
time on the order of e

√
2 ln a ln ln a.

For reference, a normal exponential algorithm, such as Pollard ρ, would run in time
approximately a

1
4 . For sufficiently large values of a, such as a = 10100, this means a running

time on the order of 1025 operations for an exponential method, and on the order of 1021.74

operations for CFRAC, for a speedup of about 1,800 times.

3.4.2 Sieving Methods
Two final methods that we shall not delve too deeply into are the quadtratic sieve (QS) and
the general number field sieve (GNFS). Both rely on the principle of Fermat’s difference of
squares and produce factors using this idea.

For QS, the idea is very similar to the continued fraction method in the previous section,
using sieve instead of trial division for factorizations. The running time of QS tends to be on
the order of about e

√
ln a ln ln a, with a being the integer to be factored. For more information

on QS, see References [3] and [13].

A lot of focus has been on the GNFS, since it is the fastest known method for factoring
large integers, or in testing the primality of extremely large integers.

The GNFS works in three basic parts. First, the algorithm finds an irreducible polynomial
that has a zero modulo n [where n is the modulo base we are working with, so that gcd(x−
y, n) > 1, to find a factor]. Next, we find squares of a certain form that will likely yield
factors. Then we find the square roots.
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The “sieve” in the GNFS comes from the finding of squares in the second step. The special
form that the squares come into involves calculating products of the sums of relatively prime
integers. These relatively prime integers are calculated using sieving techniques.

For more information on the GNFS, see, for example, References [2] and [8].

3.5 Discrete Logarithms

Many algorithms use large group operations, such as exponentiation and large integer mul-
tiplication, to hide data.

For example, we can choose a finite field such as F23 and a generator 2. We can easily
calculate 29 = 6 in F23. But, if someone saw a message passed as the integer 6, even with the
knowledge that the generator is 2 and the field is F23, it is still, in general, a difficult problem
to discover the exponent applied to the generator that yielded the given integer.

Solving an equation
ax = b

for x in a finite field while knowing a and b is called solving for the discrete logarithm. (The
standard logarithm is solving for the exponent in ax = b with real numbers.)

For groups defined by addition of points on elliptic curves, the operation becomes taking
a fixed point and adding it to itself some large number of times, or, for P, computing aP in
E(Fp) for some prime p.

Examples of such algorithms are the Diffie-Hellman key exchange protocol [4], ElGamal
public key encryption [5], and various elliptic curve cryptography methods. To provide a
concrete example, the Diffie-Hellman key exchange protocol on a finite field Fp works as
follows:

1. Two parties, A and B, agree on a finite field Fp and a fixed generator g. A generates a
secret integer a, and B generates a secret integer b.

2. A→ B: ga ∈ Fp
B can then compute (ga)b = gab in Fp.

3. B→ A: gb ∈ Fp
A can then compute (gb)a = gab in Fp.

Both parties now share a secret element, gab. An interceptor listening to their communica-
tions will know Fp, g, ga, and gb and will strive to find gab from this information. The easiest
way of accomplishing this is to solve for a = logg(ga) or b = logg(gb), which is computing
the discrete logarithm. However, this problem, it turns out, is incredibly difficult.

For the following problems, we will consider the case that we are in a finite field Fp,
where p is a prime number. To make notation consistent, we will consider finding x such that
ax = b in our finite field, where a is a generator and b is the desired result.

Note, however, that the following algorithms are equally applicable on other algebraic
structures, such as elliptic curve groups.

3.5.1 Brute Force Methods
There are, in general, two brute force methods for computing a discrete logarithm.
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If the number of elements in the field is small enough (less than a few billion or so, at least
with today’s computers), we can pre-compute and store all possible values of the generator
raised to an exponent. This will give us a lookup table, so that any particular problem will
take only as much time as it takes to look up the answer.

Obviously, there are some strong limitations here. With large fields, we can have ex-
tremely large tables. At some point, we aren’t going to have enough storage space to store
these tables.

At the other end of the spectrum is the second method for computing a discrete log-
arithm. Here, each time we want to solve a discrete logarithm problem, we try each and
every exponent of our generator. This method takes the most amount of time during actual
computation but has the advantage of no pre-computation.

It’s easy to see that there should be a trade-off somewhere, between pre-computing every-
thing or doing all the work every time. However, we need to be a little clever in choosing that
trade-off point. Some people have put a lot of cleverness into these trade-off points, discussed
below (and similar concepts are discussed in later chapters).

3.5.2 Baby-Step Giant-Step Method
The baby-step giant-step algorithm is one of the simplest trade-offs on time versus space, in
that we are using some pre-computed values to help us compute the answers we need below.

Baby-Step Giant-Step. For the following algorithm, assume we are working in finite field Fp,
solving ax = b in Fp for x.

1. Compute L =
√

p, rounded down, using the normal numerical square root operation.

2. Pre-compute the first L powers of a, {a1, a2, . . . , aL}, and store them in a lookup table,
indexed by the exponents {1, 2, 3, . . . , L}.

3. Let h =
(
a−1)L, our multiplier.

4. Let t = b, our starting point.

5. For each value of j in {0, 1, . . . , L− 1}, do the following:

(a) If t is in the lookup table (some index i exists such that ai = t in the field), then
return i + j× L.

(b) Set t = t× h.

Basically, we are computing b× hj in the loop and terminating when it equals some ai,
where 0 ≤ i < L, giving us

b× hj = ai

b× ((a−1)L)j = ai

b× a−Lj = ai

b = ai · aLj

b = aLj+i

Therefore, the discrete logarithm of b is Lj + i.

3.5.2.1 Baby-Step Giant-Step Analysis
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The baby-step giant-step algorithm represents a hybrid of the first two brute force methods.
It has on the order of

√
p space requirements (for the L powers of a) and about

√
p log(p)

running time.
Like the previous brute force methods, this method will find us an answer eventually,

and there is no randomness involved. However, the space requirements are fairly large. For
example, when p has hundreds or thousands of digits, then

√
p will have roughly half the

same number of digits, which will still be hundreds or thousands of digits! This amount of
storage exceeds the capacity of current technology.

3.5.3 Pollard’s ρ for Discrete Logarithms
Pollard’s ρ method for discrete logarithms [11] relies on a similar principle as Pollard’s ρ

method for factoring — that is, we are looking for a cycle when stepping through exponents
of random elements.

Here, assume that the group we are working with (the field) is the set of integers between
0 and p− 1 (written as Zp).

To perform Pollard’s ρ algorithm for discrete logarithms, we partition the set of all integers
between 0 and p− 1 into three partitions of roughly equal size: P0, P1, and P2. These three
sets can be simple, such as either the integers below p divided into three contiguous sets (the
first third of numbers less than p, the second third, the third third), or split by the remainder
of the number when divided by 3 (so that 2 belongs in P2, 10 belongs in P1, and 15 belongs
in P0).

The algorithm expects to solve the problem ax = b in the group G, thus it takes a and b
as arguments.

It relies on three functions to operate: the function f , which takes one argument — an
integer modulo p — and returns an integer modulo p; the function g, which takes an integer
modulo p and a normal integer and returns an integer modulo p− 1; and a function h that
takes an integer modulo p and an integer and returns an integer module p− 1.

The functions are defined based on the partition they are in. Thus:

If x is in G0 :


f (x) = (bx) mod p
g(x, n) = (n + 1) mod (p− 1)
h(x, n) = n mod (p− 1)

If x is in G1 :


f (x) = (x2) mod p
g(x, n) = (2n) mod (p− 1)
h(x, n) = (2n) mod (p− 1)

If x is in G2 :


f (x) = (ax) mod p
g(x, n) = n mod (p− 1)
h(x, n) = n + 1 mod (p− 1)

Pollard’s ρ for Discrete Logarithms.

1. Set a0 = 0 and b0 = 0, two of our starting helper values.

2. Set x0 = 1, our starting point in G.

3. Let i = 0.
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4. Repeat the following steps until, at the end, xi = x2i, and thus, we have found that our
paths have merged.

(a) Let i = i + 1.

Now, we calculate the next value for the function traveling slowly:

(b) Calculate the next x: xi = f (xi−1).

(c) Calculate the next a: ai = g(xi−1, ai−1).

(d) Calculate the next b: bi = h(xi−1, bi−1).

Now, we calculate the next value for the function traveling quickly:

(e) Calculate the next x: x2i = f ( f (x2i−2)).

(f) Calculate the next a: a2i = g( f (x2i−2), g(x2i−2, a2i−2)).

(g) Calculate the next b: b2i = h( f (x2i−2), h(x2i−2, b2i−2)).

5. If our b’s match, that is, bi = b2i, then the algorithm failed.

6. Set m = ai − a2i mod (p− 1).

7. Set n = b2i − bi mod (p− 1).

8. Solve, for x, the equation mx ≡ n (mod (p− 1)). More than likely, this will result in a
few possible values of x (usually a fairly small amount). Unfortunately, the only thing
to do is to check each one and see if it is the correct answer.

3.5.3.1 Analysis of Pollard’s ρ for Discrete Logarithms
Pollard’s ρ solves the discrete logarithm with running time on the order of

√
p (the square

root of the size of the finite field), with constant space, contrasted to the baby-step giant-step
method, which takes a similar amount of time but a large amount of space.

This makes it a great candidate for small discrete logarithm problems, where
√

p is not
too big (more than the number of calculations we are willing to make). The other issue is that
this algorithm is not guaranteed to work: the intersection we find may not yield any useful
values of x.

3.5.4 Pollard’s λ for Discrete Logarithms
Pollard also proposed a generalization of the ρ algorithm for discrete logarithms, called the λ

method (λ is the Greek letter lambda). Pollard’s λ method of finding a discrete logarithm is
a neat algorithm — interesting name, an amusing description, and very clever. Here, we want
to compute the discrete logarithm for gx = h in a group G where we have some bound on x,
such that a ≤ x < b.

The following description is derived from References [11] and [15].
This method is sometimes called the method of two kangaroos (or hares, or rabbits, de-

pending on the author). The concept is that two kangaroos (representing iterative functions)
are going to go for some “hops” around the number field defined by the integer we wish to
factor. These two kangaroos (or ’roos, as we like to say) consist of a tame one, controlled by
us and represented by T, and a wild one that we are trying to catch, W.
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The tame ’roo, T, starts at a random point, t0 = gb, while W starts at w0 = h = gx. Define
d0(T) = b, the initial “distance” from the “origin” that the tame ’roo is hopping, and let
d0(W) = 0, the initial distance of our wild ’roo from h.

Let S = {gs1 , . . . , gsk} be a set of jumps and let G be partitioned into k pieces G1, G2, . . . , Gk,
with 1 ≤ f (g) ≤ k being a function telling to which partition g belongs. These exponents
of g in S should be positive and small compared to (b− a). Most often, we will pick these
numbers to be powers of 2 (2i). These are the hops of both kangaroos.

Now, the two kangaroos are going to hop. T goes from ti to

ti+1 = tig
s f (ti)

The tame ’roo will have distance

di+1(T) = di(T) + s f (ti)

Similarly, W goes from wi to
wi+1 = wig

s f (wi)

giving the wild ’roo distance
di+1(W) = di(W) + s f (wi)

Eventually, T will come to rest at some position tm, setting a trap to catch W. If ever
dn(W) > dm(T), then the wild kangaroo has hopped too far, and we reset W to start at
w0 = hgz, for some small integer z > 0.

3.5.4.1 Analysis of Pollard’s λ

To make this work, we need to set the si values so that they are about 0.5
√

b− a on average,
and we will have T set its trap after approximately 0.7

√
b− a hops, giving us that W will hop

about 2.7
√

b− a times before stopping. This method also has on the order of ln(b− a) space
requirements, and on the order of 2.7

√
b− a time requirements.

3.5.5 Index Calculus Method
The index calculus method provides a method analagous to quadratic and number field
sieves of factoring, shown above. This method is particularly well suited to solving the
discrete logarithm on multiplicative groups modulo prime numbers. One description of a
subexponential discrete logarithm function was described by Adleman and Demarrais [1].

In general, this can be a very fast method over multiplicative groups, with on the order of

e
√

2 log p log log p setup time and about e
√

log p log log p running time.
For more information on the index calculus method, please refer to Reference [1].

3.6 Summary

Public-key cryptographic systems and key exchange systems often rely on algebraic and
number theoretic properties for their security. Two cornerstones of their security are the
difficulty of finding factors of large numbers and solving discrete logarithms.

In this chapter, I discussed techniques for attempting to crack these two problems. While
factoring and discrete logarithms for large problems are not easy, they represent the best way
to perform cryptanalysis on most number theoretic and algebraic cryptosystems.
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Exercises

For any of the programming exercises in this chapter, I recommend using a language that
supports large number arithmetic. Languages that support such features are C/C++ (through
gmp), Java, and Python, although most languages will have at least some support for large
number arithmetic.

Other languages and environments would also be useful for many of these problems,
such as Mathematica and MATLAB. However, I find it difficult to recommend these packages
for every reader, since they can be very expensive. If you have the ability to experiment with
these and other advanced mathematical tools, feel free to use them.

Exercise 1. To get your fingers warmed up, take the Python Challenge, which is available
online at www.pythonchallenge.com. This is a set of puzzles, some quite difficult, that
require writing programs of various kinds to complete.

Although it is called the “Python” Challenge, there is no reason that any other language
could not be used. It just happens that they guarantee that there are usually the appropriate
packages available for Python (such as the Python Imaging Library for some of the image
manipulation puzzles), along with Python’s built-in support for string manipulation, large
integer mathematics, and so forth.

Again, I am not trying to condemn or recommend any particular language for any partic-
ular purposes. This just happens to be, in my opinion, a good set of programming exercises.

Exercise 2. Implement the standard brute force factoring algorithm as efficiently as possible
in a programming language of your choice. Try only odd numbers (and 2) up to

√
a (where

a is the number you wish to factor).

Exercise 3. Make improvements to your brute force algorithm. For example, skipping mul-
tiples of 3, 5, 7, . . . . Discuss the speed improvements in doing so.

Exercise 4. Implement Fermat’s difference of squares method in the programming language
of your choice. Discuss its performance (running times) with inputs of integers varying in
size from small numbers (< 100) up through numbers in the billions and further.

Exercise 5. Implement Pollard’s p− 1 factorization algorithm.

Exercise 6. Building on the elliptic curve point addition used in the previous chapter, im-
plement elliptic curve factorization (ECM).

Next, provide a chart to compare the performance of Pollard’s p − 1 and ECM for the
same inputs (with the same, or similar, parameters).

Exercise 7. Implement Pollard’s ρ algorithm for both factoring and discrete logarithms.

www.pythonchallenge.com
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CHAPTER

4
Block Ciphers

So far, we have covered basic mathematics for studying encryption algorithms and even
learned how to use several forms of asymmetric algorithms (ones that usually have a split key,
a private and a public key). Before progressing further into modern symmetric algorithms
(ones where both parties share the same key), we need to have an overview of the different
forms of block ciphers.

To review, a block cipher is one that takes more than one character (or bit) at a time,
processes them together (either encryption or decryption), and outputs another block. A
block usually consists of a contiguous set of bits that is a power of 2 in size; common sizes
are 32, 64, 128, and 256 bits. (A block size of 8 or 16 bits would possibly mean that it is not so
much a stream cipher, but more just a character-for-character cipher, like we studied earlier.)

The simplest example of a block cipher is the columnar transposition cipher studied
above. However, columnar transposition ciphers are based on character transformations and
have variable block size, depending on the column size chosen. The ciphers studied from
here on out are used in digital computers and thus will normally have bit operations.

Before the 20th century, people normally wanted to send messages consisting of text. This
required operations on letters and blocks of letters, since these messages were written, either
by hand or perhaps type; thus the tools and techniques of cryptography were focused on
letters and blocks of letters. In the modern age, we are concerned with digital information,
such as text files, audio, video, and software, typically transmitted on computers or computer-
like devices (e.g., phones, ATMs). The standard way to represent these forms of data is in
bits, bytes, and words.

The following section presents a quick review of the basic building blocks of modern
cryptography, such as bits and bytes. The rest of the chapter is devoted to more complicated
structures of modern ciphers that we need to understand, so that we can break them in
further chapters. I also present the inner workings of a few of the most popular targets for
modern cryptanalysis (because of their widespread use), such as DES and AES.

This chapter is not an exhaustive study of modern cryptography. There are many good
books on cryptography: the building of ciphers, as well as tools and techniques for doing so
[13, 17]. Here, we wish to understand the basic structure of most ciphers, especially related
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to how we can manipulate those structures in later chapters.

4.1 Operations on Bits, Bytes, Words

A bit, as seen above but not quite defined, is a binary digit that is either a 0 or a 1. The
standard byte is composed of 8 contiguous bits, representing values 0 through 255 (assuming
we are only concerned with non-negative integers). When writing a byte in terms of its 8
bits, we write them as we do with normal numbers in decimal notation, in most significant
bit order — as in, left-to-right, the more important, and hence “bigger,” bits written first. For
example, the byte representing the number 130 written in binary is

10000010

There is such a thing as least significant bit order, where the bits are essentially written
backwards in a byte (certain communication protocols use this, for example), but I shall not
discuss this further.

The next major organization of bits is the word, the size of which is dependent on the
native size of the CPU’s arithmetic register. Normally, this is 32 bits, although 64-bit words
have been becoming common for quite some time; less commonly seen are 16-bit and 128-bit
words.

We again have two ways of writing down words as combinations of bytes. The most
significant byte (MSB) writes the “biggest” and most important bytes first, which would be
analogous to the most significant bit order first. This is also called big endian, since the
“big end” is first. For a 32-bit word, values between 0 and 4,294,967,295 (= 232 − 1) can
be represented (again, assuming we are representing non-negative integers). In big-endian
binary, we would write the decimal number 1,048,580 (= 220 + 22 = 1,048,576 + 4) as

00000000 00010000 00000000 00000100

Equivalently, we can write it in big-endian hexadecimal (base 16) by using a conversion
table between binary and hexadecimal (see Table 4-1).

Table 4-1 Binary to Hexadecimal Conversion Table

Binary Hex Binary Hex

0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

The above number, 1,048,580, written in big-endian hexadecimal (“hex”) would be 00 10
00 04.
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There is also another way to represent words in bytes: least significant byte (LSB) or little
endian (for “little end” first). Basically, just take the previous way of writing it, and reverse
it. The most confusing part is that the bits are still written in most significant bit order.

This would make the above number, 1,048,580, written in little-endian hexadecimal as 04
00 10 00 and in binary as

00000100 00000000 00010000 00000000

There is no consensus in the computer architecture community on which one of these
methods of writing words is “better”: They both have their advantages and disadvantages.

I will always be very clear which method is being used in which particular cipher, as
different ciphers have adopted different conventions.

4.1.1 Operations
There are a few basic operations that are useful to understand. Before, we studied basic
operations on normal text characters, such as by shifting the characters using alphabets.
Now, we are concerned with operations on binary data.

The AND operator (sometimes written as &, ·, or ×) operates on 2 bits. The result is a 1 if
both operands are 1, and 0 otherwise (and hence, only 1 if the first operand “and” the second
operand are 1). The reason symbols for multiplication are used for AND is that this operates
identically to numerically multiplying the binary operands.

The OR operator (sometimes written as | or +) also takes two operands, and produces
a 1 if either the first operand “or” the second operand is a 1 (or both), and 0 only if both
are 0. Sometimes this can be represented with the plus symbol, since it operates similarly
to addition, except that in this case, 1 + 1 = 1 (or 1 | 1 = 1), since we only have 1 bit to
represent the output.

The XOR (exclusive-OR, also called EOR) operator, commonly written as ˆ (especially
in code) and ⊕ (often in text), operates the same as the OR operator, except that it is 0 if both
arguments are 1. Hence, it is 1 if either argument is 1, but not both, and 0 if neither is 1.

XOR has many uses. For example, it can be used to flip bits. Given a bit A (either 0 or 1),
calculating A⊕ 1 will give the result of flipping A (producing a result that is opposite of A).

Table 4-2 shows the outputs of the AND, OR, and XOR bitwise operators.

Table 4-2 Bit Operations

A B A & B A | B A⊕ B

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The final basic operation is the bitwise NOT operator. This operator takes only a single
operand and simply reverses it, so that a 0 becomes a 1 and a 1 becomes a 0. This is typically
represented, for a value a, as ∼ a, a, or ¬ a (in this book, we mostly use the latter). This can be
combined with the above binary operators, by taking the inverse of the normal output. The
most used of these operators are NAND and NOR.
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All of these operators naturally extend to the byte and word level by simply using the
bitwise operation on each corresponding pair of bits in the two bytes or words. For example,
let a = A7 and b = 42 (both in hexadecimal). Then a & b = 02, a | b = E7, and a⊕ b = E5.

In this book, I will try to show bits numbered from 0 up, with bit 0 being the least
significant. When possible, I will try to stick with MSB (big endian) byte order, and most
significant bit order as well. One final notation that is handy when specifying cryptographic
algorithms is a notation of how to glue together various bits. This glue (or concatenation)
is usually denoted with the ‖ symbol. For example, the simple byte, written in binary as
01101101 would be written as

0 ‖ 1 ‖ 1 ‖ 0 ‖ 1 ‖ 1 ‖ 0 ‖ 1

We might also specify some temporary value as x and want to specify the individual bits,
such as x0, x1, and so on. If x is a 4-bit value, we can use the above notation to write

x = x3 ‖ x2 ‖ x1 ‖ x0

Because we may be working with large structures with dozens or hundreds of bits, it can
sometimes be useful to use the same glue operator to signify concatenating larger structures,
too. For example, if y is a 64-bit value and we want to reference 8 of its byte values, we might
write them as

y = y7 ‖ y6 ‖ y5 ‖ y4 ‖ y3 ‖ y2 ‖ y1 ‖ y0

In this case, we will let y0 be the least significant 8 bits, y1 the next bits, and so forth.
I will try to be clear when specifying the sizes of variables, so that there will be as lit-

tle confusion as possible. Even I have had some interesting problems when implementing
ciphers, only to discover it is because the sizes were not properly specified, so the various
pieces did not fit together.

4.1.2 Code
Again, I find it useful to have some code snippets in this chapter so that you can more easily
see these algorithms in action.

And again, as in the previous chapter, I will have the examples in Python. This is for
several reasons:

• Python has good support for array operations.

• Python code tends to be short.

• Python code tends to be easy to read.

• I already introduced Python, and it would be silly to introduce another language.

I won’t have time to introduce every concept used, but I will try not to let something
particularly confusing slip through. It is my intention that the examples will provide illumi-
nation and not further confusion.

With that little bit of introductory material out of the way, we can start exploring how we
build block ciphers using some of the tools that we have developed, as well as a few more
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additional tools we shall build in the following sections.

4.2 Product Ciphers

One concept has reigned up to this point: We take some chunk of plaintext, subject it to a
single process, and after that single process is completed, we have that ciphertext. This is not
the case with most real-world ciphers today.

Modern ciphers are designed with the realization that having a single, large, complex op-
eration can be impractical. Moreover, relying on only a single technique, such as a columnar
transposition, is putting all of our eggs in one basket, so to speak: all of security is dependent
on a single principle.

One of the key concepts in modern cryptography is the product cipher — a type of cipher
that consists of several operations conducted in sequences and loops, churning the output
again and again. The operations used are often those seen so far: substitutions, permutations,
arithmetic, and so on. Ideally, the resilience of the resulting ciphertext will be significantly
more than the individual strengths of the underlying techniques.

A simple example from Chapter 1 illustrates this concept. Instead of just performing
a polyalphabetic cipher (susceptible to Kasiski’s method) or a columnar transposition cipher
(subject to the sliding window technique with digraph and trigraph analysis), we can combine
both techniques — first perform a keyed substitution, letter-by-letter, on the original plaintext,
and then run the output of that through the columnar transposition matrix. In this case, the
resulting ciphertext would be completely immune to both Kasiski’s method and to windowed
digraph and trigraph analysis, defeating all of the techniques previously developed.

However, using a small sequence of polyalphabetic and columnar transposition ciphers
in sequence does not make a cipher robust enough for modern use. Anyone who can guess
which combination of techniques is being used can easily combine several types of analysis
at once. There are a fairly limited number of combinations of these simple techniques to
be used. And even so, these combinations could be easily broken by modern computing
speeds. And finally, because most modern data that need to be encrypted are binary data
from computers, and not handwritten or typed messages, these techniques are ill-suited for
most current needs.

4.3 Substitutions and Permutations

In Chapter 1, I discussed two useful tools: substitutions (as in mono- and polyalphabetic
substitution ciphers) and transpositions (as in columnar transposition ciphers). It turns out
that digital counterparts to these exist and are widely used in modern cryptography.

4.3.1 S-Box
The terminology for a digital substitution is called a substitution box, or S-box. The term
box comes from the fact that it is regarded as a simple function: it merely accepts some small
input and gives the resulting output, using some simple function or lookup table. When
shown graphically, S-boxes are drawn as simple boxes, as in Figure 4-1.
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S-box

Figure 4-1 Graphical representation of a 4-bit S-box.

S-boxes normally are associated with a size, referring to their input and output sizes
(which are usually the same, although they can be different). For example, here is a repre-
sentation of a 3-bit S-box, called simply S:

S[0] = 7 S[3] = 4 S[6] = 0
S[1] = 6 S[4] = 3 S[7] = 1
S[2] = 5 S[5] = 2

This demonstrates one of the simplest methods of describing an S-box: merely listing the
output for every input. As we can see, this S-box, S, almost reverses the numbers (so that 0
outputs 7, 1 outputs 6, etc.), except the last two entries for S[6] and S[7].

We can also specify this S-box by merely writing the outputs only: we assume that the
inputs are implicitly numbered between 0 and 7 (since 7 = 23 − 1). In general, they will be
numbered between 0 and 2b − 1, where b is the input bit size. Using this implicit notation,
we have S written as

[7, 6, 5, 4, 3, 2, 0, 1]

Of course, in the above S-box, I never specified which representation of bits this repre-
sents: most significant or least significant. A word of caution: some ciphers do actually use
least significant bit order (such as DES), even though this is fairly uncommon in most other
digital computing. This can be very confusing if you are used to looking at ciphers in most
significant bit order, and vice versa.

As specified above, S-boxes may have different sizes for inputs and outputs. For example,
an S-box may take a 6-bit input, but only produce a 4-bit output. In this case, many of the
outputs will be repeated. For the exact opposite case, with, say, a 4-bit input and 6-bit output,
then there will be several outputs that are not generated.

Sometimes S-boxes are derived from simpler moves. For example, we could have a 4-bit
S-box that merely performs, for a 4-bit input x, the operation 4− x mod 16, and gives the
result. The S-box spelled out would be

[4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5]

S-boxes have some advantages, as we can see. They can be very random, with little
correspondence between any input bits and output bits, and have few discernible patterns.

One primary disadvantage is size: They simply take a lot of space to describe. The 8-bit
S-box for Rijndael, shown in Figure 4-2, takes a lot of space and requires implementing code
to store the table in memory (although it can also be represented as a mathematical function,
but this would require more computation at run time).
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0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 4-2 Full listing of the Rijndael’s 8-bit S-box.

Another tool, the permutation box (or simply, P-box), is similar to an S-box but has a
slightly different trade-off: A P-box is usually smaller in size and operates on more bits.

4.3.2 P-Box
A P-box provides similar functionality to transpositions in classical cryptography. The pur-
pose of the permutation box is to permute the bits: shuffle them around but without changing
them.

P-boxes operate by mapping each input value to a different output value by a lookup
table — each bit is moved to a fixed position in the output. Most P-boxes simply permute the
bits: one input to one output. However, in some ciphers (such as DES), there are expansive
and selective permutations as well, where the number of output bits is greater (some bits are
copied) or smaller (some bits are discarded), respectively.

P-boxes are normally specified in a similar notation to S-boxes, only instead of represent-
ing outputs for a particular input, they specify where a particular bit is mapped to. Assume
that we number the bits from 0 to 2b − 1, where b is the size of the P-box input, in bits. The
output bits will also be numbered from 0 to 2c − 1, where c is the size of the P-box output, in
bits.

For example, an 8-bit P-box might be specified as

P = [3 5 1 0 4 7 6 2]

This stands for P[0] = 3, P[1] = 5, P[2] = 1, . . . , P[6] = 6, P[7] = 2. The oper-
ation means to take bit 0 of the input and copy it to bit 3 of the output. Also take bit 1 of the
input, and copy it to bit 5 of the output, and so forth. (Note that not all bits necessarily map
to other bits — e.g., in this P-box, bits 4 and 6 map to themselves.) The example in Figure 4-3
illustrates this concept graphically.

For the preceding P-box, assume that the bits are numbered in increasing order of sig-
nificance (0 being the least significant bit, 7 the most). Then, for example, the input of 00
will correspond to 00. In hexadecimal (using big-endian notation), the input 01 would cor-
respond to 20, and 33 would correspond to B8.
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7 6 5 4 3 2 1 0

Figure 4-3 A simple graphical representation of an 8-bit P-box. Note that bits 4
and 6 are passed straight through.

A few things to note about P-boxes: They aren’t as random as S-boxes — there is a one-to-
one correspondence of bits from the input to the output. P-boxes also take a lot less space to
specify than S-boxes: the 8-bit P-box could be written out in very little space. A 16-bit P-box
could be written as a list of 16 numbers, but it would require a list of 65,536 numbers to fully
specify a 16-bit S-box.

However, technically speaking, P-boxes are S-boxes, just with a more compact form. This
is because they are simply a mapping of input values to output values and can be represented
as a simple lookup table, such as an S-box. The P-box representation is merely a shortcut,
albeit a very handy one.

If we look at any of the previously mentioned structures, though, we can see that they
should not be used alone. A trivial cipher can be obtained by just using an S-box on an input,
or a P-box, or even XORing each input byte with a fixed number. None of these techniques
provides adequate security, though: The first two allow anyone with knowledge of the S-box
or P-box to immediately decrypt a message, and with a simple XOR, anyone who knows the
particular value of one byte in both plaintext and ciphertext could immediately derive the
key.

For these reasons, I will use the above concept of a product cipher to combine each of these
concepts — bitwise operations, S-boxes, and P-boxes — to create a very complicated structure.
We won’t limit ourselves to just these particular operations and boxes, but the ones explained
so far represent the core of what is used in most modern cryptographic algorithms.

4.3.3 Shift Registers
Another tool used in the construction of ciphers is a shift register. Look at Figure 4-4, one
of two shift registers in Skipjack (called Rule A and Rule B), for an example of how a shift
register operates.

w1 G w2 w3 w4

Counter

Figure 4-4 Skipjack’s Rule A shift register.

Typically, a shift register works by taking the input and splitting it into several portions;
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thus in this case, w = w1 ‖ w2 ‖ w3 ‖ w4 is our input. Then, the circuit is iterated several
times. In this diagram, G represents a permutation operation. Thus, after one round through
the algorithm, w2 will get the permutation of w1; w3 will be the XOR of the old w2, the
counter, and the old w1; and w4 will get the old value of w3; while w1 gets the old value of
w4. This iteration is repeated many times (in Skipjack, it iterates eight times in two different
locations).

Shift registers are meant to mimic the way many circuits and machines were designed to
work, by churning the data in steps. These are also designed with parallelism in mind: while
one piece of circuitry is performing one part of the computation, another can be computing
with a different part of the data, to be used in following steps.

4.4 Substitution–Permutation Network

The first natural extension of the above simple techniques is to merely start combining them.
A substitution–permutation network (SPN) is just that: it chains the output of one or more
S-boxes with one or more P-boxes, or vice versa. The concept is similar to chaining together
simple substitution ciphers of text and transposition ciphers: We have one layer substituting
values for other values, thereby adding a lot of confusion (in that it is a bit harder to see where
the output comes from). We then have another layer mixing the output bits from one or more
S-boxes and jumbling them together, contributing primarily to diffusion (in that input bits
influence a lot of output bits).

However, up until this point, we are still going to have trouble with the output being
trivially related to the input: simply knowing the combinations of S-boxes and P-boxes can
let us derive one from the other. We need a way of adding a key into the system so that only
parties privy to the key will be able to encrypt and decrypt messages.

The most common mechanism for adding keys to the above system is to compute some
function of the key to give a set of bits, referred to as the key schedule. These bits from the
key schedule are then usually integrated into the cipher somehow, normally by XORing them
together with intermediate bits in the cipher (such as the input of some S-boxes).

The most common way of forming an SPN is to have many (usually different) S-boxes
and P-boxes, with their inputs and outputs chained together. For example, see Figure 4-5.
When we chain them together like this, we may XOR in the key schedule bits several times.
We call these key schedule bits and not just the key bits because, as I said above, these bits are
merely derived from the key. Some may be identical to the key, but, for example, we may use
different subsets of the key bits at different parts of the network (maybe shifted, or inverted
at different parts).

As Reference [5] points out, SPN ciphers are ideal for demonstrating several cryptanalytic
techniques.

4.4.1 Easy1 Cipher
There is a need for a cipher that is easy enough for you to easily implement and see results
of various techniques, while still being complicated enough to be useful. For that, we shall
create a cipher call Easy1 in this section. We’ll use it in later chapters to demonstrate some of
the methods of cryptanalysis.

Easy1 is a 36-bit block cipher, with an 18-bit key. Easy1 works by splitting its input
into 6-bit segments, running them through S-boxes, concatenating the results back together,



Chapter 4 Block Ciphers 86

Intermediate Ciphertext (i)

S-box S-box S-box S-box S-box S-box

⊕ Key

Intermediate Ciphertext (i + 1)

Figure 4-5 Easy1 SPN cipher for a single round.

permuting them, and then XORing the results with the key. The key is just copied side-by-
side to become a 36-bit key (both the “left half” and “right half” of the cipher bits are XORed
with the same key).

We will use various numbers of rounds at different times, usually low numbers.
The 6-bit S-boxes in Easy1 are all the same:

[16, 42, 28, 3, 26, 0, 31, 46, 27, 14, 49, 62, 37, 56,
23, 6, 40, 48, 53, 8, 20, 25, 33, 1, 2, 63, 15, 34, 55,
21, 39, 57, 54, 45, 47, 13, 7, 44, 61, 9, 60, 32, 22, 29,
52, 19, 12, 50, 5, 51, 11, 18, 59, 41, 36, 30, 17, 38,
10, 4, 58, 43, 35, 24]

This is represented in the more compact, array form: the first element is the substitution
for 0, the second for 1, and so forth. Hence, an input of 0 is replaced by 16, 1 by 42, and so
on. The P-box is a large, 36-bit P-box, represented by

[24, 5, 15, 23, 14, 32, 19, 18, 26, 17, 6, 12, 34, 9, 8,
20, 28, 0, 2, 21, 29, 11, 33, 22, 30, 31, 1, 25, 3, 35,
16, 13, 27, 7, 10, 4]

Our goal with Easy1 is that it should be easy to understand and fast to derive keys
without the use of cryptanalysis (so answers can be verified).
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I’ll provide some quick code to perform Easy1.

4.4.1.1 Python Implementation
Here, I show a simple Easy1 implementation in Python. For simplicity, I will make the
implementation generic so that different values can be easily put in and tested.

Assume that the S-box is input as a simple array in a variable called s, and that the P-box
is also stored as an array in s.

We can make generic S-box and P-box functions. The S-box function is simple: Use the
argument as an index into the array, which will return the appropriate value. The P-box
implementation is a bit trickier, as shown in Listing 4-1.

##########################################

# S-box function

##########################################

def sbox(x):

return s[x]

##########################################

# P-box function

##########################################

def pbox(x):

y = 0

# For each bit to be shuffled

for i in range(len(p)):

# If the original bit position

# is a 1, then make the result

# bit position have a 1

if (x & (1l << i)) != 0:

y = y ^ (1l << p[i])

return y

Listing 4-1 Python code for the Easy1 S-box and P-box.

In Listing 4-1, we first have to introduce some cumbersome notation: the “l” (or “L”)
modifier specifies that the number may grow to become more than 32 bits (which is the size
of a normal Python integer). Although it can automatically grow, it gives a lot of warnings if
we don’t tell Python we are expecting this, by specifying that we want a long integer, meaning
that it can be much bigger. (The values of the bits of the output that are not copied are all
zeros.)

The rest of the code to implement the P-box is not too bad. We have to do an ugly
calculation that, for each bit position in the P-box, determines if that input bit is set. If so,
then it determines which bit the set bit maps to in the output and sets it as well. All bits not
set in this way are set to zero.
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The next piece of code (Listing 4-2) is used for splitting apart the pieces to be fed to
the S-boxes and then put back together — hence the mux (multiplex, or combine) and demux
(demultiplex, or break apart) functions.

##########################################

# Takes 36-bit to six 6-bit values

# and vice-versa

##########################################

def demux(x):

y = []

for i in range(0,6):

y.append((x >> (i * 6)) & 0x3f)

return y

def mux(x):

y = 0

for i in range(0,6):

y = y ^ (x[i] << (i * 6))

return y

Listing 4-2 Python code for the Easy1 multiplexing and demultiplexing.

The trickiest part of this code is the use of the bit shift operators, which simply take the
left-hand side of the expression and shift the bits left (for <<) or right (for >>) by the number
on the right. The demux function also uses an AND operation by 0x3F, which is the bit mask
representing the binary expression 1111111— that is, six 1’s, which will drop all the bits to
the left, returning only the rightmost six bits.

Finally, we write one last helper function: the code to XOR in the keys. This code is shown
in Listing 4-3 — nothing too fancy there.

##########################################

# Key mixing

##########################################

def mix(p, k):

v = []

key = demux(k)

for i in range(0,6):

v.append(p[i] ^ key[i])

return v

Listing 4-3 Python code for Easy1 key XORing.

After all of these helper functions, we can put in the code to do the actual encryption: the
round function and a wrapper function (encrypt). This code is shown in Listing 4-4.

To complete this code roundup, we have the decryption code (shown in Listing 4-5).
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##########################################

# Round function

##########################################

def round(p,k):

u = []

# Calculate the S-boxes

for x in demux(p):

u.append(sbox(x))

# Run through the P-box

v = demux(pbox(mux(u)))

# XOR in the key

w = mix(v,k)

# Glue back together, return

return mux(w)

##########################################

# Encryption

##########################################

def encrypt(p, rounds):

x = p

for i in range(rounds):

x = round(x, key)

return x

Listing 4-4 Python code for Easy1 encryption.

SPNs can be used alone (as a complete cipher, such as AES), or, for example, as part of a
Feistel structure (see the next section).

4.5 Feistel Structures

One disadvantage to many types of ciphers, including substitution–permutation networks,
is that two separate operations are required: encryption and decryption. Most algorithms
require separate software routines or hardware to implement the two operations. When
writing a cryptographic suite for an ASIC (a fixed, silicon chip), there is often a premium
on space available: Implementing two separate functions, one for encryption and one for
decryption, will naturally take up about twice as much space.

Luckily, there is a technique that allows both encryption and decryption to be performed
with nearly identical pieces of code, which has obvious cost-saving benefits.

This now-common structure for modern ciphers was invented by Horst Feistel and is
naturally called the Feistel structure. The basic technique is simple: Instead of developing



Chapter 4 Block Ciphers 90

##########################################

# Opposite of the round function

##########################################

def unround(c, k):

x = demux(c)

u = mix(x, k)

v = demux(apbox(mux(u)))

w = []

for s in v:

w.append(asbox(s))

return mux(w)

##########################################

# Decryption function

##########################################

def decrypt(c, k):

x = c

for i in range(rounds):

x = deround(x, key)

return x

Listing 4-5 Python code for Easy1 decryption.

two different algorithms (one for encryption, one for decryption), we develop one simple
round function that churns half a block of data at a time. The round function is often denoted
f and usually takes two inputs: a half-sized block and a round key. We then cleverly arrange
the inputs and outputs to create encryption and decryption mechanisms for the whole block
in the following manners.

For a particular structure, slight variations of the same Feistel structure are common
between encryption and decryption rounds — different at least in key choice (this is called the
key schedule), and sometimes in other parameters, or even the the workings of the structure
itself.

Feistel ciphers typically work by taking half of the input at any round and XORing it with
the output of the Feistel structure. This is then, in the next round, XORed with the other half,
and the two halves are swapped, and the Feistel structure is computed and XORed in again.
The two “halves” are not necessarily of equal length (which are called unbalanced).

Basic Feistel Encryption Algorithm. The basic Feistel encryption algorithm structure is r
rounds long, with the round function f .

1. Split the initial plaintext, P, into two halves: the “left half” (L0) consists of the most
significant bits, and the “right half” (R0) consists of the least significant bits.

2. For each round, i = 1, . . . , r, do the following:

(a) Calculate Ri = Li−1 ⊕ f (Ri−1, Ki), that is, the previous left half XORed with the
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round function (whose arguments are the previous right half and the current
round key).

(b) Calculate Li = Ri−1.

This structure will make more sense after looking at Figure 4-6, which shows the encryption
in action.

The algorithm then terminates after the appropriate number of rounds, with the output ci-
phertext, C, obtained by concatenating the two halves after r rounds: Lr and Rr. For example,
with three rounds, we would have the following progression:

R0
L0
R1 = L0 ⊕ f (R0, K1)
L1 = R0
R2 = L1 ⊕ f (R1, K2)
L2 = R1
R3 = L2 ⊕ f (R2, K3)
L3 = R2

Now, the nifty part of the Feistel structure we can see here at the end: if we have the ci-
phertext, L3 and R3, then that means we also have R2 (since L3 = R2). The party doing the
decrypting will also know the key and thus will then know the appropriate value of the key
schedule, K3, allowing the party to calculate f (R2, K3). Now note that

R3 = L2 ⊕ f (R2, K3)

from the above encryption. We can then rewrite this (by exchanging L2 and R3 due to the
symmetry of XOR) to obtain

L2 = R3 ⊕ f (R2, K3)

We thus obtain the previous round’s intermediate ciphertext, L2 and R2. Repeating this again
and again will eventually reveal the original plaintext, as shown in the following example:

L3
R3
R2 = L3
L2 = R3 ⊕ f (R2, K3)
R1 = L2
L1 = R2 ⊕ f (R1, K2)
R0 = L1
L0 = R1 ⊕ f (R0, K1)

We can now generalize the decryption operation to work with any number of rounds.

Basic Feistel Decryption Algorithm. Computes a basic Feistel operation of r rounds, with a
round function f , and key schedule (K1, K2, . . . , Kr).

1. Split the ciphertext, C, into two halves: the “left half” (Lr) consists of the most significant
bits, and the “right half” (Rr) consists of the least significant bits.

2. For each round, i = r− 1, . . . , 0, do the following:
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Plaintext

L0 R0

f

K1

L1 = R0 R1 = L0 ⊕ f (R0, K1)

f

K2

L2 = R1 R2 = L1 ⊕ f (R1, K2)

...
...

Figure 4-6 The Feistel structure for the first two rounds. The remaining rounds
just repeat the structure.
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(a) Set Ri = Li+1.

(b) Set Li = Ri+1 ⊕ f (Ri, Ki+1).

As we can see, for decryption, the operations are nearly identical to the encryption algorithm.
The primary difference is that the keys (Ki) are submitted in reverse order.

Ciphers that use the above Feistel structure have several notable properties.

• The round function can be relatively simple, as the structure is normally iterated nu-
merous times. Typically 4, 8, 16, and 32 rounds are common.

• Encryption and decryption, for the most part, can use identical structures: the round
function does most of the work for both operations. (Encryption and decryption can
still differ by more. For example, some ciphers with Feistel structures have different
forms for their initial or final rounds, such as initial and final permutations.)

• The round function can be nonlinear and noninvertible. In many ciphers, such as the
Caesar cipher, the core function must be invertible: we have to be able to go backwards
to decrypt. However, with the Feistel structure, we never need to compute the inverse of
the round function, since both encryption and decryption use the normal round func-
tion. Normally, the round function is a product cipher of permutations, substitutions,
and other functions.

Although using the round function definitely saves time and space, since it operates on
half as many bits, there are a few issues to consider. The round function operates on half as
many bits, thus there is less to brute-force with. Furthermore, since the security of the round
function is the security of the cipher, it must be rock solid.

4.6 DES

The Data Encryption Standard (DES) [10] is based on the Lucifer algorithm, from IBM. DES
was the first Feistel-based cipher, and Horst Feistel himself worked on it. For more on the
background and history of DES, see References [1] and [17].

DES is a 64-bit cipher in every sense: It operates on 64-bit blocks and has a 64-bit key.
However, the key in DES is effectively a 56-bit key; the other 8 bits are used for parity.
Although brute-forcing a 56-bit key means evaluating 72,057,594,037,927,936 different keys
(about 72 quadrillion, or million billions), which is not a computation to take lightly, it is
not outside the realm of possibility. In 1999, a network of computers (distributed.net and the
Electronic Frontier Foundation’s Deep Crack machine) succeeded in brute-forcing a known-
plaintext key in less than a day [8].

DES Encryption Algorithm. First, a note on numbering. I will try to be true to the DES
specification [10], and in doing so, will have to adopt its backwards numbering scheme. In
DES, all bits are numbered from most significant to least significant, 1 to whatever (up to
64). This means that the decimal number 18 (10010 in binary) has the bit numbers shown in
Table 4-3.
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Table 4-3 Binary Representation of the Decimal Number 18

Bit Number: 1 2 3 4 5

Value: 1 0 0 1 0

This is unlike most other algorithms we will use and see, which number 0, 1, . . . , and
from least significant to most significant (right-to-left).

DES first takes the 64-bit input block and does an initial permutation, shifting the 64 bits
around. (I won’t show the details of every box in DES and refer the interested reader instead
to Reference [10].)

The DES main round structure then operates identically to the basic Feistel structure
shown in the previous section — split the permuted plaintext into L0 and R0, and run the
following Feistel structure for 16 rounds:

1. Compute Ri+1 = Li ⊕ f (Ri, Ki+1).

2. Set Li+1 = Ri.

After the final round, the ciphertext goes through the inverse of the initial permutation.
The real meat of DES is in the round function and the key schedule. Let’s discuss the key

schedule first.

4.6.1 DES Key Schedule
The key schedule produces, from a 64-bit key, a set of 16 keys (K1, K2, . . . , K16) using the
following method:

1. The key is split into two 28-bit halves (since there are 56 uniquely defined bits), by
using a P-box (which throws away bits 8, 16, 24, 32, 40, 48, 56, and 64 of the key, and
scrambles the rest). The left half is denoted C0, and the right half is denoted D0.

2. For each round, i = 1, 2, . . . , 16, we left rotate the previous round’s values for Ci and Di
by 1 (for rounds 1, 2, 9, and 16) or by 2 (for rounds 3–8 and 10–15). The outputs are
put through to the next round and also concatenated and put through another selective
permutation (which reduces them to 48 bits) for use as the round key Ki. The selective
permutation remains the same throughout the algorithm.

We then have 16 48-bit round keys, K1, K2, . . . , K16.

4.6.2 DES Round Function
The DES round function consists of four operations, applied in succession:

1. The 32 bits of the input to the round function are put through an expansive permutation
to create a 48-bit value (the bits are shuffled around, and some are copied). The selective
permutation is represented by the following list:

[32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12,
13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24,

25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1]
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Here, each entry, numbered 1–48, represents each bit of the output. The value in the
entry is which bit in the input to copy. For example, the first bit of the output is copied
from bit 32 of the input, the second bit of the output from bit 1 of the input, and so
forth, until all 48 bits of the output are copied from the input.

2. The 48 bits are XORed with the round key.

3. The 48 bits are split into eighths (each a 6-bit value), and each of these values is used
as the input to a separate S-box, each of whose output is 4 bits. There are eight distinct
S-boxes for this step. The outputs are concatenated into a 32-bit number.

4. The 32 bits are put through a P-box, whose output is also 32 bits long. The P-box can
be represented by this list:

[16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2,
8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25]

This list is numbered from 1 to 32, where each entry corresponds to a bit of output. The
value in the entry represents which bit to copy to the output bit.

The final result from the P-box is then given as the output. Figure 4-7 shows a diagram of
DES’s round function.

Input

⊕ Round Key

S1 S2 S3 S4 S5 S6 S7 S8

Output

Figure 4-7 DES 32-bit round function.

The S-boxes in the third step are the most critical part of the cipher. The rest of DES is
fairly straightforward and predictable, thus a very large part of the security of DES rests in
the values of the S-boxes.

4.6.3 Triple DES
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An ever-growing flaw with DES is its limited key strength, as already mentioned. Despite
this, the algorithm was widely used for decades, and few debilitating weaknesses were found
in the algorithm. In order to combat the key weakness but prevent hardware and software
manufacturers from having to completely change products that utilize DES, a way to extend
the life was proposed in the form of triple DES (or, more commonly written, 3DES).

The 3DES method is fairly similar to how it sounds: We essentially run the cryptographic
algorithm three times, each time with a potentially different key. We don’t just encrypt three
times on one end and decrypt three times on the other end, though. Instead, we encrypt and
decrypt plaintext P (and corresponding ciphertext C) with three keys, K1, K2, and K3 (in that
order), by computing

Encryption: C = EncryptK3
(DecryptK2

(EncryptK1
(P)))

Decryption: P = DecryptK1
(EncryptK2

(DecryptK3
(C)))

Hence, 3DES is sometimes referred to as DES-EDE (for “Encrypt–Decrypt–Encrypt”).
There are a few notes to make here. We have three keys, so wouldn’t we have a key of

length 56× 3 = 168 bits? The answer is — sometimes, but not usually.
In most implementations of 3DES, there is a 112-bit key; we let K1 and K2 be distinct

keys, and K3 = K1. The official specification also allows for two additional modes: using
three distinct keys (for a full 168-bit key) and having all three keys be the same. Note that if
all three keys are the same, then the first two operations of the encryption cancel each other
out, as do the final two of the decryption, which creates the standard DES ciphering scheme.
This allows software and hardware made for 3DES to also be easily converted back to the
original DES as well (although it will be slower because of the wasted time of encrypting and
decrypting with no end result).

4.6.4 DESX
Many different variants of DES have been proposed. An interesting one is meant to make an
exhaustive key search (by trying all possible 56-bit keys) much harder, while not increasing
the complexity of the original algorithm at all. DESX uses the exact same algorithm as DES
above but involves extra steps called whitening.

Essentially, if we have a DES function using a key k on a plaintext P, we can, for example,
write our ciphertext as

C = DESk(P)

To whiten DES, we take two additional keys of 64 bits each, say, k2 and k3, and XOR them to
the plaintext and ciphertext, respectively:

C = k3 ⊕DESk(P⊕ k2)

The XOR operation used is where the “X” in “DESX” comes from.
The security of this is actually more than it appears at first glance: adding these XORs

does not appear to make the cipher less secure and could possibly increase the virtual key to
be 56 + 64 + 64 = 184 bits, instead of the standard 56 bits. In addition, it is trivial to take a
normal algorithm that calculates a DES ciphertext and modify it for DESX: Simply XOR the
plaintext once before running the algorithm, and XOR the ciphertext afterwards.

This covers the basic workings of DES, although I don’t explicitly state the values of the
S-boxes and P-boxes. This information is readily available in the specification and in many
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books.

4.7 FEAL

FEAL (the Fast Encipherment Algorithm) is one of the simpler Feistel-based ciphers. Be-
cause many cryptanalytic attacks work on FEAL, it demonstrates many weaknesses for us to
analyze.

FEAL was created in the 1980s as a fast alternative of DES. There was a feeling that
DES was too slow, especially for most personal computers in that era (Intel 8086s, Motorola
68000s, etc.), because of its fairly large number of complicated round functions that must be
calculated just to get 64 bits of output. FEAL, like DES, is based on a Feistel structure, but
designed to provide a simpler, faster, and still secure variant, replacing the large S-boxes with
simple functions. (However, as we see below, it fails miserably in the secure department.)

FEAL Algorithm. The basic encryption and decryption algorithm follows a simple Feistel
structure, as seen in Figure 4-8. There are several functions that I will cover, but the overall
algorithm is as follows:

1. Calculate a key schedule (K0, K1, . . . , K11) in accordance with Section 4.7.4.

2. Break the plaintext, P, into two 32-bit halves: (L0, R0).

3. Calculate L0 = L0 ⊕ (K8 ‖ K9).

4. Calculate R0 = R0 ⊕ (K10 ‖ K11)⊕ L0.

5. For r = 1, . . . , 8 (i.e., each of eight rounds):

(a) Rr = Lr−1 ⊕ f (Rr−1, Kr−1).

(b) Lr = Rr−1.

6. Calculate L8 = L8 ⊕ R8 ⊕ (K14, K15).

7. Calculate R8 = R8 ⊕ (K12, K13).

I will break down the different pieces of these and explain each of them in the following
sections.

4.7.1 S-function
Rather than use a larger, complicated S-box, a simple function is used in FEAL so that it could
be implemented in a few standard computer instructions without requiring large lookup
tables. The S-box is called the S-function, defined as a function of three variables: x, y, and δ.
Here, x and y are byte values, while δ is a single bit that changes depending on which round
the S-function occurs in.

We define S(x, y, δ) as

S(x, y, δ) = rot2(x + y + δ) mod 256

The “mod 256” portion indicates that we need to do simple byte arithmetic. The “rot2”
function indicates taking its argument, in this case an 8-bit number, and shifting all of its bits
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Plaintext

L0 R0

K8 ‖ K9 K10 ‖ K11

f

K0

L1 R1

f

K1

L2 = R1 R2 = L1 ⊕ f (R1, K1)

...
...

L8 R8

K12 ‖ K13K14 ‖ K15

Figure 4-8 FEAL’s encryption structure.
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(as seen in its most significant bit form) to the left by two places, with the most significant 2
bits (shifted out on the left) being rotated back in to the least significant bits (on the right).
For example:

rot2(00101011) = 10101100

A sample implementation of the S-function, including the rotation function, is shown in
Listing 4-6.

##########################################

# The rot2 function - helper for the S-function

##########################################

def rot2(x):

r = (x << 2) & 0xff # Calculate the left shift, removing extra bits

r = r ^ (x >> 6) # OR in the leftmost two bits onto the right

return r

##########################################

# The FEAL S-function

##########################################

def sbox(x, y, delta):

return rot2((x + y + delta) & 0xff)

Listing 4-6 Python code for the FEAL S-function.

4.7.2 Key-Generating Function: fK
The fK function is a helper function that churns the key to create various subkeys.

Here, the inputs to the key generating function, denoted α and β, are 32-bit quantities,
split into four 8-bit quantities. Operations are then done with 8-bit arithmetic, probably since,
when FEAL was designed, it was much faster than 32-bit arithmetic, and the 8-bit results are
recombined into the 32-bit result.

1. Let the 32-bit result of the key function be referenced by four 8-bit subparts, so that
fK(α, β) = f 0

K(α, β) ‖ f 1
K(α, β) ‖ f 2

K(α, β) ‖ f 3
K(α, β).

2. Let the 32-bit input to fK, α, be referenced as four 8-bit quantities as well: α = α0 ‖ α1 ‖
α2 ‖ α3.

3. Similarly for β: β = β0 ‖ β1 ‖ β2 ‖ β3.

4. Calculate f 1
K = S(α0 ⊕ α1, α2 ⊕ α3 ⊕ β0, 1).

5. Calculate f 2
K = S(α2 ⊕ α3, f 1

K ⊕ β1, 0).

6. Calculate f 0
K = S(α0, f 1

K ⊕ β2, 0).

7. Calculate f 3
K = S(α3, f 2

K ⊕ β3, 1).

8. Recombine the above three results to obtain fK.
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4.7.3 Round Function: f
The f -function is the actual round function, acting as the heart of its Feistel structure. It takes
as input two 32-bit values (α and β), and produces a 32-bit result.

1. Split the eventual output of the round function into four separately addressable 8-bit
parts: f (α, β) = f 0(α, β) ‖ f 1(α, β) ‖ f 2(α, β) ‖ f 3(α, β). Call the values it returns
simply f 0, f 1, f 2, and f 3.

2. Split the 32-bit input, α, into four 8-bit parts: α = α0 ‖ α1 ‖ α2 ‖ α3.

3. Do the same for β: β = β0 ‖ β1 ‖ β2 ‖ β3.

4. Calculate f 1 = α1 ⊕ β0 ⊕ α0.

5. Calculate f 2 = α2 ⊕ β1 ⊕ α3.

6. Recalculate f 1 = S( f 1, f 2, 1).

7. Recalculate f 2 = S( f 2, f 1, 0).

8. Calculate f 0 = S(α0, f 1, 0).

9. Calculate f 3 = S(α3, f 2, 1).

To implement these nine steps, we first need to define a few helper functions, to split the
32-bit block into four 8-bit parts (demux) and to recombine 8-bit parts into a single 32-bit
block (mux). These are very similar to those used in the SPN cipher above, Easy1. In Python,
we can use the code in Listing 4-7.

Now that we have all of the helper functions for FEAL, we can define the FEAL main
round function, as shown in Listing 4-8.

4.7.4 Key Scheduling
The key scheduling algorithm for FEAL is meant to split up a 64-bit key into various derived

subparts (based on the fK key scheduling function), for use in the main round function of
FEAL.

1. Let K = (A0, B0) and D0 = 0.

2. For eight rounds, r = 1, . . . , 8:

(a) Dr = Ar−1.

(b) Ar = Br−1.

(c) Br = fK(Ar−1, Br−1 ⊕ Dr−1).

(d) K2(r−1) = (B0
r , B1

r ).

(e) K2(r−1)+1 = (B2
r , B3

r ).

In Python, we can implement this fairly easily, as shown in Listing 4-9.

Although we will get into more detailed cryptanalysis of FEAL later, there are a few
things to note.
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##########################################

# Splits a 32-bit block into four 8-bit values

# and vice-versa

##########################################

def demux(x):

# Create an array of size four to store

# the result

y = []

# Calculate each part in turn

for i in range(0,4):

# They are numbered left to right, 0 to 3

# But still in MSB order

y.append((x >> ((3 - i) * 8)) & 0xff)

return y

def mux(x):

# Initialize result to zero

y = 0

# The input, x, is an array of 8-bit values

for c in x:

# Combine each 8-bit value using OR

y = (y << 8) ^ c

return y

Listing 4-7 Multiplex and demultiplex routines for FEAL.

It’s easy to see that FEAL is almost more complicated than DES: it takes more space to
explain and requires more bits and pieces. To give FEAL some credit, most of the operations
are indeed very fast: they usually operate on a small number of bits, so that they can be
implemented in one machine code instruction.

4.8 Blowfish

Blowfish is another Feistel cipher, created by Bruce Schneier in 1994 [15, 16]. According to
Schneier, it was designed to be fast, simple, small, and have a variable key [17]. The following
description is based mostly on his description in Reference [17].

Blowfish has a slight variant of the Feistel structure previously used and operates on 64-
bit blocks. It uses expansive S-boxes and other simple operations. There are two features that
differentiate it from DES:

• Blowfish’s S-boxes are key-dependent — the actual substitution values are regenerated
whenever the algorithm is rekeyed. It has four dynamic 8-bit to 32-bit S-boxes.
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##########################################

# Feal round function, f

##########################################

def f(alpha, beta):

# Split alpha and beta

a = demux(alpha)

b = demux(beta)

# Make the output four 8-bit values

fs = [0,0,0,0]

# Calculate each 8-bit value

fs[1] = a[1] ^ b[0] ^ a[0]

fs[2] = a[2] ^ b[1] ^ a[3]

fs[1] = sbox(fs[1], fs[2], 1)

fs[2] = sbox(fs[2], fs[1], 0)

fs[0] = sbox(a[0], fs[1], 0)

fs[3] = sbox(a[3], fs[2], 1)

# Return the 32-bit result

return mux(fs)

Listing 4-8 The FEAL round function, f .

• It has a variable length key, up to 448 bits.

The basic Blowfish algorithm consists of two phases: calculating the key schedule (33,344
bits derived from up to 448 bits of key), and performing the encryption or decryption algo-
rithm.

4.8.1 Blowfish Key Schedule
Schneier refers to the subkeys, generated from the main key, as 18 32-bit keys: P1, P2, . . . , P18.
The key scheduling algorithm also calculates the S-box, since its values are completely deter-
mined by the key itself.

Blowfish Key Scheduling. The P-values and S-box values for the main encryption are cal-
culated based on an input key (of up to a length of 448 bits) and the hexadecimal digits of
π.

1. Initialize the P-values (left-to-right) with the hexadecimal digits of π — that is, the digits
to the right of the “hexadecimal point.” They start off as 24 3f 6a 88 85 a3 08 d3
. . . . After the P-values are filled, then fill the S-boxes, in order with the digits of π. The
pre-computed values can be found easily on the Internet.

2. Starting with P1, calculate P1 = P1 ⊕ K1, P2 = P2 ⊕ K2, and so forth. Here, the K-values
represent the originally inputted key values, up to 448 bits. There may be up to 14
K-values, to correspond to the P-values.

It is necessary to XOR a K-value with each P-value, so repeat the values as necessary by
starting over with K1, then K2, etc. again. For example, with a 128-bit key (representing
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##########################################

# FEAL key generating function

##########################################

def fk(alpha, beta):

# Split alpha and beta

a = demux(alpha)

b = demux(beta)

# Express output as four 8-bit values

fs = [0,0,0,0]

# Calculate the four 8-bit values

fs[1] = sbox(a[0] ^ a[1], a[2] ^ a[3] ^ b[0], 1)

fs[2] = sbox(a[2] ^ a[3], fs[1] ^ b[1], 0)

fs[0] = sbox(a[0], fs[1] ^ b[2], 0)

fs[3] = sbox(a[3], fs[2] ^ b[3], 1)

return mux(fs)

Listing 4-9 FEAL key-generating function, fK.

K1, . . . , K4 values), after calculating P4 = P4 ⊕ K4, then perform P5 = P5 ⊕ K1, and so
on.

3. Encrypt a 64-bit block consisting of all zeros (00 00 00 00 00 00 00 00) using the
Blowfish algorithm, with the P-values from the previous step.

4. Replace P1 and P2 with the output from the previous step’s Blowfish run.

5. Take the output from Step 3 and encrypt it (with the new, modified P-values).

6. Replace P3 and P4 with the output from the previous step.

7. Repeat this process (encrypting the previous Blowfish output and replacing the next
set of P-values), filling all P-values and then the S-boxes (i.e., the 32-bit outputs of the
S-box entry) in order. The S-box ordering is defined to be S1,0, S1,1, . . . , S1,255, S2,0, S2,1,
. . . , S4,255.

This will require a total of 521 iterations in order to compute all values.

4.8.2 Blowfish Algorithm
The algorithm is based on the Feistel structure, with a total of 16 rounds. The key to the
algorithm, as mentioned above, is that the algorithm is kept very simple: for each round,
only three XORs, two additions, and four S-box lookups are required.

Blowfish Encryption Algorithm. The basic cryptographic algorithm operates on a 64-bit
input and produces a 64-bit output. The following shows the encryption portion. To obtain
the decryption code, simply replace Pi in the following with P19−i (with P17 and P18 at the
end being replaced with P2 and P1, respectively):

1. Split the plaintext into two halves: the left half (L0) and the right half (R0).
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2. For each of 16 rounds (i = 1, 2, . . . , 16):

(a) Set Li = Li−1 ⊕ Pi.

(b) Set Ri = f (Li)⊕ Ri.

(c) Swap Li and Ri.

3. Swap L16 and R16 (undoing the previous swap).

4. Set R17 = R16 ⊕ P17.

5. Set L17 = R17 ⊕ P18.

The output is the block obtained by recombining L17 and R17. This main round procedure is
shown in Figure 4-9.

Li Ri

Pi

F

Li+1 Ri+1

Figure 4-9 The Blowfish algorithm’s main encryption loop.

4.8.3 Blowfish Round Function
The core of the algorithm is, as with all Feistel structures, in the round function.

Blowfish Round Function. In this case, the round function ( f in the algorithm) works on a
32-bit argument and produces a 32-bit output by the following method:

1. Divide the 32-bit argument into four 8-bit values: a, b, c, and d.

2. Using unsigned arithmetic, calculate S1,a + S2,b. Take the result as a 32-bit integer
(ignoring any portion that might have extended beyond 32 bits).

3. Calculate the XOR of the result of Step 2 and the output of S3,c.

4. Finally, take the result of Step 3 and add (unsigned, with 32-bit arithmetic, as before)
S4,d. This will be the result of the round function.



Chapter 4 Block Ciphers 105

4.8.4 Notes on Blowfish
This round function has a few interesting properties. Notably, which S-boxes are chosen
depends on the data themselves: so that the data dictate their own encryption. [This is
because the split plaintext (a, b, c, and d) is used to choose the S-boxes.]

The other important note about Blowfish is that it requires 521 encryptions using its own
encryption algorithm before it can produce a single block of output. Therefore, encrypting
a single block would take very long because of the long setup time. It really only becomes
moderately fast to use Blowfish when encrypting at least several hundred blocks (meaning
thousands of bits); otherwise, the setup time will dominate the total encryption and decryp-
tion times. Luckily, we need to compute the key values and S-boxes only once.

4.9 AES/Rijndael

The Rijndael algorithm was chosen by the U.S. Government as the successor to DES [2]. The
Rijndael algorithm (and certain parameter settings) was then dubbed the Advanced Encryp-
tion Standard (AES).

Rijndael is a variable-sized block cipher named after its inventors, Vincent Rijmen and
Joan Daemen. It is a variant of the SPN concept, with more sophisticated and elegant variants
of S-box and P-box operations.

Rijndael itself supports block sizes and key sizes of 128, 160, 192, 224, and 256 bits,
although AES supports only 128-bit blocks and keys with bit lengths of 128, 192, and 256.
The number of rounds for Rijndael varies depending on the key size and the block size. For
AES (block size of 128 bits only), the number of rounds is shown in Table 4-4.

Table 4-4 The Number of Rounds for Different Values of the Key Length for AES

Key Length Block Size Rounds
(Nk), in words (Nb), in words (r)

4 4 10
6 4 12
8 4 14

Here, the values for key length and block size are the number of 32-bit words:
thus “4” corresponds to 128 bits, “6” to 192 bits, and “8” to 256 bits.

The key is, as for most of the ciphers I have been discussing, broken out into a large key
schedule, derived from the original key. This is covered in Section 4.9.3.

Rijndael breaks its blocks into a matrix, called the state, with four rows and various
numbers of columns (4–8). With block sizes of 128–256, this means that each element of the
matrix is an 8-bit value. Figure 4-10 shows an example of this state.
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S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

Figure 4-10 A state associated with a 128-bit block size Rijndael, such as in AES.
If the state is a 128-bit value, then it it is split into the matrix by breaking it down:
S0,0 ‖ S0,1 ‖ S0,2 ‖ S0,3 ‖ S1,0 ‖ S1,1 ‖ S1,2 ‖ S1,3 ‖ S2,0 ‖ S2,1 ‖ S2,2 ‖ S2,3 ‖ S3,0 ‖ S3,1 ‖ S3,2 ‖
S3,3.

4.9.1 Rijndael Encryption Algorithm
The Rijndael encryption algorithm essentially consists of four basic operations, applied in
succession to each other, and looped multiple times:

1. SubBytes — Each element of the state is run through an S-box.

2. ShiftRows — The elements of each row of the state are cyclically shifted.

3. MixColumns — Each column is run through a function to mix up its bits.

4. AddRoundKey — A portion of the key schedule is XORed with the state.

The AddRoundKey is the only portion of the algorithm dependent on the current round num-
ber and the key.

Using the above four pieces, we can specify the Rijndael encryption algorithm.

Rijndael Encryption Algorithm. Assume that there are r rounds (r is dependent on the key
size), and that the plaintext has been loaded into the state.

1. Run AddRoundKey on the state.

2. Do the following r− 1 times.

(a) Run SubBytes on the state.

(b) Run ShiftRows on the state.

(c) Run MixColumns on the state.

(d) Run AddRoundKey on the state.

3. Run SubBytes on the state.

4. Run ShiftRows on the state.

5. Run AddRoundKey on the state.

I’ll now describe the four sections in a bit more detail. For a more thorough treatment,
see References [2] and [9]. The following examples use the details in the AES for a 128-bit
block size.

4.9.1.1 SubBytes
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The SubBytes operation essentially functions as an 8-bit S-box, applied to each 8-bit value of
the state, as shown in Figure 4-11.

a0,0
a0,1 a0,2 a0,3

a1,0
a1,1 a1,2 a1,3

a2,0
a2,1 a2,2 a2,3

a3,0
a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

S

Figure 4-11 The Rijndael SubBytes operation.

The S-box can be represented in several ways. The normal S-box implementation, with
a fixed lookup table, is shown in Figure 4-2. The way I often show it is, if I define the 8-bit
input a to be written as a7 ‖ a6 ‖ · · · ‖ a0 and b to be written similarly, then

b7
b6
b5
b4
b3
b2
b1
b0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



a7
a6
a5
a4
a3
a2
a1
a0


⊕



0
1
1
0
0
0
1
1


where the × operator means matrix multiplication. If this is confusing, it is fairly easy, and
often faster, to just use the lookup-table representation of the S-box.

4.9.1.2 ShiftRows
The ShiftRows operation performs a cyclical shift of each row of the state. Each row is shifted
by one more value than the previous row (see Figure 4-12):

1. The first row is left intact (no rotation).

2. The second row is rotated once to the left.

3. The third row is rotated twice to the left.

4. The fourth row is rotated three times to the left.

a0,0
a0,1 a0,2 a0,3

a1,0
a1,1 a1,2 a1,3

a2,0
a2,1 a2,2 a2,3

a3,0
a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,1 b1,2 b1,3 b1,0

b2,2 b2,3 b2,0 b2,1

b3,3 b3,0 b3,1 b3,2

Figure 4-12 The Rijndael ShiftRows operation.
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4.9.1.3 MixColumns
The MixColumns operation is the most complicated part of the AES algorithm.

Although I won’t go into the nitty-gritty of the mathematics of multiplication over GF(28)
(the finite field of size 28, also written as Z28), in the case of AES, this essentially means
that we will multiply two 8-bit numbers, and take the remainder modulo 283 (which is
100011011 in binary), using binary XOR long division, not normal arithmetic. This is
the same as doing normal division, except that instead of successively subtracting, we use
binary XOR. Also, while in normal subtraction, we only subtract if we are dividing a smaller
number into a larger number at each stage, whereas with XOR, we only divide if they have
the same number of binary digits (so either number can be greater). So that we don’t confuse
this with normal arithmetic multiplication, I will denote the operation as • (as done in the
specification [9]).

For example, I will show how to do this with the AES example in Reference [9], calculating
87 • 131 (or, 01010111 • 10000011). We first multiply the two numbers as usual, obtaining
11,397, or 1010110111001. We then perform the long division to obtain the remainder when
divided by 10011011:

101000

100011011 10101101111001
⊕100011011

1000000

100000011
⊕100011011

11000

11000001

11000001

For the MixColumns operation, we are going to take each column and perform a matrix
multiplication, where the multiplication is the • operation shown above. The operation will
be 

b0,c
b1,c
b2,c
b3,c

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⊗


a0,c
a1,c
a2,c
a3,c


where the ai,c entries on the right are the old column entries, the bi,c entries on the left are
new column entries, and the ⊗ operator means to perform matrix multiplication with the •
operator and XOR instead of addition. We can specify this less abstractly as

b0,c = (2 • a0,c)⊕ (3 • a1,c)⊕ a2,c ⊕ a3,c

b1,c = a0,c ⊕ (2 • a1,c)⊕ (3 • a2,c)⊕ a3,c

b2,c = a0,c ⊕ a1,c ⊕ (2 • a2,c)⊕ (3 • a3,c)

b3,c = (3 • a0,c)⊕ a1,c ⊕ a2,c ⊕ (2 • a3,c)

This operation will be performed for each column, that is, for c = 1, 2, 3, and 4.
The MixColumns operation is shown graphically in Figure 4-13.
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a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ⊗ =

Figure 4-13 The Rijndael MixColumns operation.

4.9.1.4 AddRoundKey
Finally, the AddRoundKey operation takes each 8-bit value of the state and XORs it with an
8-bit value of the key schedule, as shown in Figure 4-14.

a0,0
a0,1 a0,2 a0,3

a1,0
a1,1 a1,2 a1,3

a2,0
a2,1 a2,2 a2,3

a3,0
a3,1 a3,2 a3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

⊕ =

Figure 4-14 The Rijndael AddRoundKey operation.

4.9.2 Rijndael Decryption Algorithm
Decryption of Rijndael is very similar to encryption: It simply involves doing the opera-
tions in reverse (with a reverse key schedule) and using inverse operations for SubBytes,
MixColumns, and ShiftRows — these operations are called, surprisingly enough, InvSubBytes,
InvMixColumns, and InvShiftRows, respectively.

The use of these inverse functions leads to the following algorithm for decryption:

Rijndael Decryption Algorithm. Assume that there are r rounds (r is dependent on the key
size) and that the ciphertext is loaded into the state.

1. Run AddRoundKey on the state.

2. Do the following r− 1 times:

(a) Run InvSubBytes on the state.

(b) Run InvShiftRows on the state.

(c) Run InvMixColumns on the state.

(d) Run AddRoundKey on the state.

3. Run InvSubBytes on the state.

4. Run InvShiftRows on the state.

5. Run AddRoundKey on the state.
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The most important thing to note is that the keys must be submitted in reverse order.

It is also important to note that the key expansion is changed slightly, as I show in Sec-
tion 4.9.3.

The inverse operations are fairly easy to derive from the normal ones: We simply con-
struct InvShiftRows by shifting in the opposite direction the appropriate number of times.
We construct InvSubBytes by inverting the S-box used (either with the inverse matrix or the
inverse of the table). And finally, the InvMixColumns transformation is found by using the
following matrix for the multiplication step:

15 11 14 9
9 15 11 14

14 9 15 11
11 14 9 15



4.9.3 Key Expansion
The key expansion step computes the key schedule for use in either encryption or decryption.

Rijndael computes its sizes in terms of 32-bit words. Therefore, in this case, a 128-bit
block cipher would have a block size denoted as Nb of 4. The key size is denoted as Nk in a
similar manner, so that, for example, a 192-bit key is denoted with Nk = 6. The number of
rounds is denoted as r.

Two functions need to be explained in order to describe the key expansion. The SubWord
function takes a 32-bit argument, splits it into four 8-bit bytes, computes the S-box transfor-
mation from SubBytes on each 8-bit value, and concatenates them back together. The RotWord
function takes a 32-bit argument, splits it into four 8-bit bytes, and then rotates left cyclically,
replacing each 8-bit value in the word with the 8-bit value that was on the right. Specifically,
it computes

RotWord(a3 ‖ a2 ‖ a1 ‖ a0) = a2 ‖ a1 ‖ a0 ‖ a3

Finally, there is a constant matrix that is used, denoted as Rcon. The values of Rcon can be
calculated fairly easily using the finite field multiplication operation •. Essentially, the values
are calculated as

Rcon(i) = 2i−1 ‖ 0 ‖ 0 ‖ 0

where each of the four parts is an 8-bit number and a member of Rijndael’s finite field.
Owing to this fact, 2i−1 must be calculated using the • multiplication operator [calculating
the previous result times (•) 2], and not normal multiplication. The first few values of 2i−1

are straightforward (starting at i = 1): 1, 2, 4, 8, 16, 32, 64, 128. When we get to 256, though,
we need to start using the finite field modulo. Therefore, the next few values are 27, 54, 108,
and so on. Table 4-5 shows the required values.

4.9.4 Notes on Rijndael
Rijndael is a modern cipher. Since it was created in the late 1990’s, after many of the standard
cryptanalytic techniques that I discuss in this book were known, it was tested against these
techniques. The algorithm was tuned so that it was susceptible to none of the techniques, as
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Table 4-5 Rijndael Table for First Entry of Rcon Values

i Rcon[i]

1 1
2 2
3 4
4 8
5 16
6 32
7 64
8 128
9 27
10 54
11 108
12 216

These entries should be sufficient for any implementations of AES.

they were known at the time.

4.10 Block Cipher Modes

Although I have limited the discussion to block ciphers up until this point, I should prob-
ably have a few words on some of the different ways they are used, besides just straight
block-for-block encryption, which has been the assumed method of using the ciphers. (In
the previous discussions, I never had the output of one block’s encryption affect a different
block’s encryption.)

4.10.1 Electronic Code Book
The normal method is normally called electronic codebook (ECB). It simply means that each
block of plaintext is used as the normal input to the block cipher, and the output of the cipher
becomes the block of ciphertext, just as we would expect. Hence, for each block of plaintext,
P, we calculate a block of ciphertext by simply applying

C = Encrypt(P)

However, there are some issues that can easily arise using a cipher in ECB mode. For
example, a lot of the structure of the original data will be preserved, because identical plain-
text blocks will always encrypt to identical ciphertext blocks. Figure 4-15 shows how this can
occur. In this figure, we encrypt every grayscale (8-bit) pixel (padded with 15 bytes of zeros)
with AES in ECB mode, and then take the first byte of the output block as the new grayscale
value. (This same method is also used for the CBC example in the next section.)1

In general, when identical plaintext blocks always encrypt to identical ciphertext blocks,

1The use of this example (and the CBC that follows) was inspired by the Wikipedia images posted by
Lunkwill.
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(a) Original image, by Thursday Bram. (b) Encrypted with AES using ECB.

Figure 4-15 A picture of a cat in a filing cabinet, demonstrating the preserved
structure present in ECB.

then there is the potential for a problem with block replay: knowing an important plaintext–
ciphertext pair, even without knowing the key, then someone can repeatedly send the known
ciphertext.

For example, assume that we have a very simple automatic teller machine (ATM), which
communicates with a bank to verify if a particular individual is authorized to withdraw cash.
We would hope that, at the very least, this communication between the ATM and the bank
is encrypted. We might naively implement the above scenario in a simple message from the
ATM:

ATM: EncryptK(“Name: John Smith, Account: 12345, Amount: $20”)

(Assume that the bank sends back a message saying, “OK, funds withdrawn,” or “Sorry,
insufficient funds.”) The above means simply to send the text message, encrypted with the
key K. If the encryption scheme merely represented this as an ASCII message and performed
an algorithm, such as AES, using the key K, we might think we are safe, since anyone listening
in on the transaction will only see something random, such as

ATM: CF A2 1E C5 AF 67 2D AC 7A E1 0D 3B 2F ...

However, someone could do something sinister even with this. For example, someone
listening in on this conversation might simply want to replay the above packet, sending it to
the bank. Unless additional security measures are in place, the bank will think that the user
is making several more ATM withdrawals, which could eventually drain the victim’s bank
account.

Even though the ATM used strong encryption to communicate with the bank, it was still
susceptible to a block replay attack. Luckily, there are methods to help prevent this attack.

4.10.2 Cipher Block Chaining
One of the most fundamental ideas of combatting the block replay problem is to make the
output of each block depend on the values of the previous blocks. This will make it so that
anyone listening to any block in the middle will not be able to repeat that one block over and
over again at a later date.
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However, simply chaining together the outputs like this still leaves a flaw: it does not
prevent block replay of the first block (or the first several blocks, if they are all replayed). A
common strategy to fight this is to add an initialization vector (the IV, and sometimes called
the “salt”) to the algorithm. Essentially, this is a random number that is combined with the
first block, usually by XORing them together. The IV must also be specified somehow, by
sending it to the other party or having a common scheme for picking them.

Using both of these strategies together results in the simple method called cipher block
chaining (CBC). The method I will describe is taken from Reference [11]. It essentially makes
each block dependent on the previous block (with the first block dependent also on the
initialization vector). Figure 4-16 shows how this eliminates block replay attacks by ensuring
that the same plaintext blocks will be encrypted differently.

(a) Original image, by Thursday Bram. (b) Encrypted with AES using CBC.

Figure 4-16 A picture of a cat in a filing cabinet. Unlike ECB, CBC obliterates
much of the underlying structure.

CBC Encryption. The following describes the basic CBC method, as described in Reference
[11]. The method uses a 64-bit block size for plaintext, ciphertext, and the initialization vector
(since the reference originally assumes that DES is used, although any cipher can be used in
CBC mode). To adapt it for other ciphers, simply change this to the relevant block size, and
use the appropriate algorithm.

1. Calculate the first block to send by taking the IV and the first block of plaintext, XORing
them, and encrypt the result. Hence,

C0 = Encrypt(P0 ⊕ IV)

2. Calculate each successive block by XORing the previous ciphertext block with the next
plaintext block, and encrypting the result. Hence, for i ≥ 1,

Ci = Encrypt(Pi ⊕ Ci−1)

Decryption in CBC is equally simple.

CBC Decryption. The biggest restriction is that the two users must share the IV or the first
block will not be comprehensible to the receiver.
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1. Decrypt the first received ciphertext block, and XOR the result with the IV to obtain the
first plaintext. Hence,

P0 = IV⊕Decrypt(C0)

2. For each successive received block, take the received block of ciphertext, run it through
decryption, and then XOR it with the previous round’s ciphertext to obtain the next
plaintext. Hence, for i ≥ 1,

Pi = Ci−1 ⊕Decrypt(Ci)

4.10.3 Cipher Feedback
There are other issues facing cryptography in addition to block replay. One is padding,
or adding additional bits to the end of plaintext so that it is a multiple of the block size.
This necessity potentially adds small weakness: we know the last few bits of plaintext if we
know the padding scheme. Many ciphers use padding either as all zeros or ones, some other
pattern, or perhaps just random bits.

However, the decrypting party needs to know how long the real message is so that any
extra padding is thrown away. In some systems, the sending party may not know exactly
how long the message is in advance (for example, it may not have enough buffers to store an
entire message of maximum length). In this case, it becomes difficult for the receiving party
to know when the message has stopped if padding is used.

In both of these cases, the alternative to using a standard block cipher is to use a stream
cipher — one that operates a bit at a time rather than a block at a time. We are mostly
concerned with block ciphers in this book, but I shall discuss how block ciphers can be
turned into stream ciphers, so that they can operate on one bit at a time (and, therefore, not
require padding for any length).

Cipher feedback (CFB) mode is one way to turn any block cipher into a stream cipher,
where the stream can consist of any number of bits, for example, it could be a bit stream
cipher, a byte stream cipher, or a smaller block size cipher. The following construction is
taken from Reference [3].

Assume we are implementing an s-bit CFB mode (with output in chunks of s bits). The
only requirement is that s is between 1 and the block size.

CFB works by first encrypting input blocks (the first is an IV) with the key. Then, the
“top” (most significant) s bits are extracted from this output, and XORed with the next s bits
of the plaintext to produce the ciphertext. These bits of the ciphertext are then sent to the
receiver.

At this point, the ciphertext bits are then fed back into the input block, hence the term
cipher feedback. The input block is shifted left by s bits, and the ciphertext bits are put in on
the right (least significant side). The process is then run again with this new input block.

4.10.4 Output Feedback
Output feedback (OFB) mode is very similar to the cipher feedback mode just discussed,
and they are often confused.

OFB starts out the same: We have an IV as our initial input block, which we encrypt with
the key. Again, we use the most significant bits to XOR against the bits to be output. The
result of this XOR is sent out as ciphertext.

Now, the difference is here. Before, we fed back in the ciphertext bits (after XORing with
the output).
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Instead, we feed back in the output bits of the encryption, before XORing with our plain-
text (the result of encrypting the input block). These bits are fed into the bottom of the input
block by shifting the block to the right and shifting in the new bits — hence the term output
feedback.

The primary difference between these two modes is that the CFB is dependent on the
plaintext to create the keystream (the series of bits that are XORed with the plaintext in a
stream cipher). With OFB, the keystream is only dependent on the IV and the key itself.

An advantage of using OFB is that if a transmission error occurs, the error will not prop-
agate beyond that corrupted block. None of the following blocks will be damaged by the
error; thus, the receiver can recover. With CFB, since the ciphertext is directly put into the
input block, the receiving end’s incorrect ciphertext value would then be forever sullying the
future decrypted bits.

4.10.5 Counter Mode
Ciphers can also be operated in counter (CTR) mode, which can also be used to convert them
to a stream cipher [3].

A series of counters is used, say, C0, C1, and so on. These counters are normally just
increments of one another, hence the term counter. The first counter, C0, should normally be
a number that is difficult to guess.

The ciphertext for a given set of plaintext bits is then obtained as follows:

1. Encrypt the next counter with the key.

2. Extract the number of bits required, using the most significant bits first. At least one
bit will be extracted, and up to all of the bits can be.

3. XOR the selected bits with the plaintext bits.

The result of the last step is then the ciphertext bits. For the next batch of plaintext bits,
encrypt the next counter, and so forth.

4.11 Skipjack

Skipjack [4] is a combination of many different cipher techniques, including large permuta-
tions and shift registers. It is a unique block cipher that operates on 64-bit blocks. It uses an
unbalanced Feistel network and an 80-bit key.

Skipjack was designed by the U.S. Government to provide a robust encryption algorithm
that enabled law enforcement to decrypt messages through an escrowed key. In other words,
the algorithm is designed so that a copy of the key is encoded in such a way that law enforce-
ment could, with an appropriate court order, obtain the key. However, the law enforcement
and key escrow portions are not what we are mostly concerned about, but the inner workings
of the encryption algorithm itself.

Skipjack is a unique algorithm, differing in many ways from the traditional Feistel struc-
tures and SPNs studied above. For example, many of its operations are in the form of shift
registers, rather than straight Feistel or SPN structures, although some of the functions used
in the shift registers employ these techniques.

4.11.1 Skipjack Encryption Algorithm
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Skipjack’s encryption algorithm works fairly simply. There are two rules used in different
rounds for a total of 32 rounds.

The plaintext is split into four parts (each being a 16-bit value): w1, w2, w3, and w4. For
each round, the plaintext is either executed through a loop of Rule A or Rule B.

Both rules rely on a permutation, usually written as G. The exact nature of G depends
on the round k (since mixing with the key, denoted cv, is done in the G permutation), so can
also be written as Gk.

Skipjack Rule A. Rule A follows a simple cyclical structure. Note that the counter is incre-
mented every round.

1. Set the new w1 value to be the G permutation of the old w1, XORed with the old w4
value, as well as the counter.

2. Set the new w2 value to be the G permutation of the old w1.

3. Set the new w3 to be the old w2.

4. Set the new w4 to be the old w3.

5. Increment the counter.

Figure 4-17 shows this process.

w1 G w2 w3 w4

Counter

Figure 4-17 Skipjack Rule A.

Skipjack Rule B. Rule B works similarly to Rule A.

1. Set the new w1 value to be the old w4 value.

2. Set the new w2 value to be the G permutation of the old w1.

3. Set the new w3 to be the old w1 XORed with the counter and XORed with the old w2
value.

4. Set the new w4 to be the old w3.

5. Increment the counter.

Figure 4-18 shows Rule B.

4.11.2 Skipjack Decryption Algorithm
Decryption of a Skipjack ciphertext is fairly straightforward: every operation from above is
reversible, including the G permutation. The rules are replaced with two new rules: A−1 and
B−1. The decryption is performed by running Rule B−1 eight times, followed by Rule A−1

eight times, Rule B−1 eight times again, and finally Rule A−1 eight times.
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w1 G w2 w3 w4

Counter

Figure 4-18 Skipjack Rule B.

Please note that the counter needs to run backwards. The keys are also submitted in re-
verse order k = 31, 30, . . . , 0. That is, we start knowing the values for k = 32 (this corresponds
to the ciphertext) and calculate the values for k = 0 (this corresponds to the plaintext).

Skipjack Rule A−1. Rule A−1 follows a similar structure to Rule A of the encryption.

1. Set the new w1 value to be the G−1 permutation of the old w2 value.

2. Set the new w2 value to be the old w3 value.

3. Set the new w3 to be the old w4.

4. Set the new w4 to be the old w1, XORed with the old w2 value as well as the counter.

5. Decrement the counter.

Skipjack Rule B−1. Rule B−1 works similarly to Rule B.

1. Set the new w1 value to be the G−1 permutation of the old w2 value.

2. Set the new w2 value to be the counter XORed with the old w3 value, again XORed
with the G−1 permutation of the old w2.

3. Set the new w3 to be the old w4.

4. Set the new w4 to be the old w1.

5. Decrement the counter.

4.11.3 Permutations
The above encryption and decryption relied on functions called the G and G−1 permutations.
See Figures 4-19 and 4-20 for their structure.

The F-function is simply an 8-bit S-box. I won’t show it here, but it can be viewed in the
specifications [4].

4.12 Message Digests and Hashes

Often, we might want to verify that we received the correct message and that nothing is
missing or corrupted. One way would be to send the entire message again, but this would
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g1 (high byte) g2 (low byte)

F

F

F

F

g5 (high byte) g6 (low byte)

cv4k

cv4k+ 1

cv4k+ 2

cv4k+ 3

Figure 4-19 Skipjack Gk transform.

double the transmission size, which could be impractical. Naturally, we want this verification
message to be as small as possible, while still serving its purpose. This verification message
could also be used as a representation of the message itself, if we needed to, for example,
prove that we received the message without repeating it in its entirety.

Two constructs that can give us these abilities are message digests and hashes. These
calculations provide error detection, smaller representations of data, and sometimes error
correction. The representations are called hashes or message digests, since they essentially
“chop” up the input and “digest” them into some form.

For error detection and correction purposes, we often see these calculations in the form of
checksums and cyclic redundancy checks. These are not designed for most security purposes
(such as providing guarantees that the message was not maliciously altered), but simply to
provide robustness against transmission or other benign errors; as such, they are usually
based on very simple, fast algorithms meant to catch simple errors (such as a single bit being
received incorrectly).

Hash functions produce hashes from input. These hash functions are designed to provide
stronger security than normal checksums: usually they have complicated, intricate calcula-
tions to churn the input to produce output. There are several desirable properties of this in
order for the hash to be a secure “representation” of the message:

1. It should not be easy to obtain information about the input from the hash.

2. It should not be easy to find two inputs that have the same hash.

3. It should not be easy to find an input that has a specific hash. Furthermore, it should be
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g1 (high byte) g2 (low byte)

F

F

F

F

g5 (high byte) g6 (low byte)

cv4k

cv4k+ 1

cv4k+ 2

cv4k+ 3

Figure 4-20 Skipjack inverse Gk transform
(
[Gk]−1

)
.

even more difficult to find such an input that bears a resemblance to another particular
input as well.

Hash functions designed with these security principles in mind are often called cryptographic
hash functions.

One primary use for cryptographic hash functions, which require all of the above security,
is in digital signatures. As we learned above, performing public key operations can be very
time-consuming (such as when taking exponentials of very large integers). These operations
become more difficult and time-consuming as the input size increases: To encrypt a 16,384-bit
block with an RSA key would require finding primes larger than 16,384, as well as a key, and
then performing thousands of arithmetic operations.

A properly designed cryptographic hash can be a representative of the entire input block
because of the above properties; there is neither a way to correlate the input and the hash, nor
to find similar blocks with the same hash. Hence, we could encrypt the smaller hash using a
public-key mechanism.

If a person uses a private key to encrypt the hash of a message, then anyone with the
public key can decrypt and verify the hash (since the hash algorithm must be well known).
Furthermore, only the holder of the private key could possibly have created the encrypted
(signed) hash, thus we can verify that the message is authentic. This is the essence of a digital
signature.

In the following sections I discuss checksums and cyclic redundancy checks and then go
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into the details of the two most popular hash algorithms: MD5 and SHA-1.

4.12.1 Checksums
Checksums are very simple measurements of ciphers. Typically, they are implemented with
simple arithmetic or bitwise operators, usually addition or XOR.

For example, to calculate an 8-bit additive checksum of a series of bytes, simply add
together the bytes and calculate the result modulo 256. For an XOR-based checksum, simply
use the bitwise XOR on each of the bytes, which will return an 8-bit value.

Other checksums use similar methods. The key thing to note here is that they are not
made for security. They are designed to check for simple errors, such as transmission or
transcription errors. Their simple implementation on processors in very few instructions
allows them to be used often in communications protocols.

It is fairly easy to defeat a checksum if it is used for security: either simply modify the
checksum itself, or modify a single portion of the message with the appropriate value to make
the checksum come out correctly. For example, with an 8-bit XOR checksum, it is necessary
to change just one byte to manipulate the checksum to be whatever is desired. Take the
current checksum, XOR it with the desired checksum, and XOR this value with any byte in
the message. The new message will now have the desired checksum.

4.12.2 Cyclic Redundancy Checks
A cyclic redundancy check (CRC) is a bit-centric method of error checking that is more
robust than normal checksums against many types of errors, but is a tad more difficult to
implement.

A CRC takes the original message and does bitwise (XOR-based) long division of it by
a fixed, known polynomial. The remainder after the division is then transmitted, which the
receiving end can easily verify by also dividing by the fixed polynomial.

CRCs vary in size, with the remainders having bit sizes between 5 and 32 being the most
common.

For example, we can calculate a 5-bit CRC of the binary message 011011011 with the
6-bit divisor 101101:

111

101101 011011011
⊕ 101101

11011

110111
⊕101101

11010

110101

⊕101101
11000

The remainder above is the binary number 11000 (24 in decimal).

4.12.3 MD5
MD5 [14] is a message digest algorithm (so named because it was the fifth in a series). It
outputs a 128-bit number from any number of bits as input (including zero).
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MD5 works fairly simply. First, the input is padded so that its length is equal to 448
modulo 512 (meaning it is 448 + 512× n bits long, for any integer n greater than or equal to
0). Then, a 64-bit number representing its length is added to the end of this (or, if the length
is more than can be represented in a 64-bit number, then the lower 64 bits of its length). This
is appended as the lower-order 32 bits first, and then the upper 32 bits (i.e., in LSB order).

MD5 operates on a 128-bit buffer at a time, split into four 32-bit words, A, B, C, and D.
Their initial values are shown in Table 4-6.

Table 4-6 Initial Values of MD5 Buffer, in Hexadecimal

A: 01 23 45 67
B: 89 ab cd ef
C: fe dc ba 98
D: 76 54 32 10

Four functions are used in the MD5 computation, one for each major round:

f (x, y, z) = (x & y) | ((¬x)& z)
g(x, y, z) = (x & z) | (y &(¬z))
h(x, y, z) = x⊕ y⊕ z
i(x, y, z) = y⊕ (x | (¬z))

Each of the four portions uses one of these functions 16 times, churning through the data
in a fairly twisty manner. At each step of the 64 steps, an operation is performed using one
of the above functions, followed by a rotation of the bytes:

a = b + ((a + F(b, c, d) + Xk + Ti)≪ s)

where F represents the f -function (Steps 0–15), the g-function (Steps 16–31), the h-function
(Steps 32–47), and the i-function (Steps 48–63). The Xk-value represents the portion of the
message block that we are pulling from. The Ti-value actually represents a value of the sine
function, defined to be (from i = 1, . . . , 64)

Ti =
(

232
)
× abs(sin(i))

Here, we assume that i is the input to the sine function, in radians. (Recall that 2π radians
is the same as 360°.) Finally, we circularly shift left (or rotate left) by different values at each
step, represented by the≪ operation.

After this, we rotate the values:

a′ = d, b′ = a, c′ = b, d′ = c

The values with the prime (′) indicate the new values to be assigned.
After the 64 steps are completed, the new values for a, b, c, and d, are added into the

working hash buffer (A, B, C, D). Then, the next block is loaded, and the process is run
again.

See Figure 4-21 for a graphical representation of this.
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≪ s
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Ti

a b c d

Figure 4-21 Basic round of MD5. Here, the “�” operator represents arithmetic
addition, modulo 232 (i.e., 32-bit addition).

Finally, the new values are arithmetically added back into the old values (with 32-bit
arithmetic):

A = A + a, B = B + b, C = C + c, D = D + d

When the last block is processed, the MD5 signature is the final value of (A, B, C, D).

4.12.4 SHA-1
The Secure Hash Algorithm 1 (SHA-1) [12] is a hashing algorithm specified by NIST that
outputs a 160-bit hash.

The following description is based on References [17] and [18].
SHA-1 takes the input as 512-bit blocks and further splits them into 16 32-bit words, la-

beled m0 through m15. The words are expanded into 80 such words by the following equation,
for i = 16, . . . , 79:

mi = (mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16)≪ 1

where the≪ 1 operation rotates the bits, circularly, left by 1.
The initial values of (a0, b0, c0, d0, e0) and (A, B, C, D, E) are

(67452301, efcdab89, 98badcfe, 10325476, c3d2e1f0)

The (A, B, C, D, E) values will represent the hash in the end. For now, we will calculate
the (a, b, c, d, e) values and eventually add them when finished processing this block.
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There are 80 rounds, for i = 1, · · · , 80:

ai = (ai−1 ≪ 5) + fi(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki
bi = ai−1
ci = bi−1 ≪ 30
di = ci−1
ei = di−1

The fi functions above change depending on the round:

i = 0, . . . , 19 : fi(x, y, z) = (x & y) |((¬ x)& z)

i = 20, . . . , 39 : fi(x, y, z) = x⊕ y⊕ z

i = 40, . . . , 59 : fi(x, y, z) = (x & y) |(x & z) |(y & z)

i = 60, . . . , 79 : fi(x, y, z) = x⊕ y⊕ z

The ki values change depending on the round:

i = 0, . . . , 19 : ki = 5a 82 79 99
i = 20, . . . , 39 : ki = 6e d9 eb a1
i = 40, . . . , 59 : ki = 8f 1b bc dc
i = 60, . . . , 79 : ki = ca 62 c1 d6

After we have processed all 80 rounds for the current block, we add the round values
(using 32-bit arithmetic) to the ongoing hash values (A = A + a, B = B + b, C = C + c,
D = D + d, and E = E + e) and start processing the next block.

Both SHA-1 and MD5 have other “relatives,” such as MD4 (similar to MD5, but with a
less thorough, and therefore faster, digesting function). However, I shall not discuss them
further.

4.13 Random Number Generators

Although we are primarily focused on block ciphers throughout this book, it can be useful to
understand a few principles about random number generators in cryptanalysis.

A random number generator is a function that generates a random number: one that
cannot be predicted. A true random number generator, one whose output defies predic-
tion, is difficult to obtain. These are normally based on the measurement of some physical
phenomenon, which, based on strong scientific support, has no patterns or other characteris-
tics. For example, measuring components of noise and radioactive decay is popular for these
numbers.

For these true random number generators, though, there is little to do, cryptanlytically
speaking. If the numbers are truly random, no system could produce meaningful results in
most cases. One exception to this rule is found in the following section.

Any method for producing random numbers that aren’t true is called a pseudorandom
number generator.

4.13.1 Bias
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Even a true random number generator can have a certain flaw: Certain numbers are generated
more often than others. For example, although flipping a coin is a fairly random process,
there is a very slight, measurable difference in the output numbers generated by the coin
toss. This can be due to any number of factors, such as wind, flipping style, and the relative
weight of the two sides of the coin. For example, if a coin is flipped 100 times, it may turn
out that on average, we can expect heads to occur about 49 times but tails to occur 51 times
(with probabilities 0.49 and 0.51, respectively).

This is an example of bias: the characteristic of a process to favor one outcome more often
than others, even if that process is truly random.

There are ways to reduce bias, typically by combining several bits to produce one bit, or
by combining several sources of randomness with each other. For example, we can simply
XOR several bits from different random sources to obtain a new random bit. With the coin
example, we will assume that tails is a 0, and heads is a 1. If we take two coin flips, we get a
0 if we have two tails in a row, or two heads in a row, giving us a probability of(

51
100
× 51

100

)
+

(
49
100
× 49

100

)
= 0.5002

The probability of a 1 is therefore 1− 0.5002 = 0.4998. Both probabilities are much closer
to 1/2, giving us a bit that has much less bias in its output (since a purely random coin flip
would have a probability of 1/2 for both heads and tails).

4.13.2 Linear Congruential Random Number Generator
Of all of the various types of pseudorandom number generators out there, a decent and
popular choice is the linear congruential random number generator [7]. This is a random
number generator that gives a sequence of numbers from numbers of the form

X ← (a× X + c) mod m

This gives a sequence of numbers dependent on integers a, c, m, and the seed, which is the
initial value (X0) of the series.

This series is called “linear congruential” because it is based on the fact that the next
number is linearly related to the next, modulo m.

Knuth [7] gives some guidance to reduce predictability and bias in this series:

1. The seed can be chosen arbitrarily. Three common ways to get a seed include saving
it between sessions, generating it from the current date and time, or having the user
input it. With all of the other variables the same, using the same seed each time allows
experiments with a pseudorandom source to be run with repeatable results.

2. The modulus m should be large, greater than 230. The word size of the computer, such
as 32 or 64 bits, is acceptable, especially with speed concerns. But there must be no
roundoff errors possible (meaning integer, and not floating point, arithmetic must be
used).

3. If m is the computer word size, such as 232 for a 32-bit computer, then ensure that
a ≡ 5 (mod 8). Otherwise, there will be cycles in the output, and certain values will
never be hit (because of algebraic properties of linear congruences).
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4. Set a to be in the range m/100 to 99m/100, and not have a simple digit pattern (like
12121 . . . ). Furthermore, a should be put through several statistical tests to guarantee
that the numbers are acceptable.

5. Choose c so that it shares no common factors with m, essentially, although its choice is
far less important than a. Preferably, do not choose c = 0.

6. The most significant bits (on the left) are more random than the least significant bits
(on the right), and thus these should play a greater role. It’s better to use the bits to
represent a binary number between 0 and 1, that is, by letting the bits be on the right
side after the decimal point (or, better, the “binary point”). Thus, a pseudorandom
number generated of 1100 would represent 0.1100 in binary, or 0.75 in decimal. To
obtain an integer (say, between 0 and k), multiply by k and truncate.

(The natural inclination is to just take the modulus with the higher end of the range, k.
This would lead to more biased results, since the least significant digits would be more
influential.)

7. Change a after every m/1000 numbers generated, or so, to keep the numbers from
going “stale.”

Further guidance on several of these points, as well as how to implement a linear congruential
random number generator without floating point arithmetic, can be found in Reference [7].

4.14 One-Time Pad

I’ll end this chapter with an idea important to cryptography and cryptanalysis.
Vernam and Mauborgne proposed that, where you have enough key material as you do

material to send, and reliable, secure ways to transfer the key material (or some system), then
even a simple Vigenère cipher is completely secure [6, 17]. In such a case, a different key
could be used for each block for encryption. This system is usually called a one-time pad.
(The underlying encryption can be nearly anything, such as a polyalphabetic substitution or
simple XOR of the key material with the plaintext.)

The claim of a one-time pad is technically true, but only in the ideal case.
For example, if both parties communicating had a particular book that they would pull

key material from, as needed, then they must merely stay synchronized with their material
to send messages. The two parties could use the Vigenère Tableau, using letters in words to
encrypt the text. It’s easy to see that this would completely defeat Kasiski’s method, since
there are no repetitive patterns of any meaning left.

But, there are three issues: coming up with enough padding material for the one-time
pad, synchronizing, and protecting the pad.

Transmitting a lot of information may be very difficult with a one-time pad, because
we need one bit of keying material for each bit to be sent. We can’t cheat by, say, using
a pseudorandom number generator, as above, because there would then be patterns inside
the ciphertext that could be exploited. Only a true source of random material that each
communicating party can have a copy of will do. In the old days, a large telephone directory
or a large book could provide a large set of information to work with (using the letters as keys
for a substitution cipher, or deriving bits from the letters for a digital cipher). These aren’t
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truly random, but can be fairly close, depending on how they are used. Today, however, with
potentially megabytes, gigabytes, terabytes, petabytes, or even exabytes and beyond needing
to be encrypted, the limited amount of information in even these large volumes would be
insufficient.

Synchronization is another problem. What happens if a message is lost in transmission
when using a one-time pad? Future received messages will then simply start being decrypted
as garbage. Sophisticated users of this system could possibly overcome this by using appro-
priate protocols — for example, once one of the users receives a garbled message, both send
the previous message they had sent starting, say, at the next page whose page number is
divisible by 10. This way, they can reset their usage of the key material. However, using even
this simple protocol, if it is publicly known, can endanger the cipher, since the adversaries
will then know a way to “reset” the cipher to a potentially known pattern.

Finally, protecting the pad is critical: all of the security rests in this one-time pad. The
problem is the key distribution problem — how do we transfer this large amount of keying
material securely? Furthermore, if we already had this secure channel in place to transmit
the very large one-time pad, why can’t we just use the same secure channel to send our data?
We need a secure channel to establish a secure channel!

While one-time pads are potentially ideal ciphers, their difficulties nearly always make
potential users shy away from them and toward different methods, such as using standard
ciphers (like DES and AES), with key distribution protocols (like the Diffie-Hellman key
distribution protocol).

4.15 Summary

When studying cryptanalysis, we obviously need something to cryptanalyze. The ciphers in
this chapter are popular targets for people to attempt to break because of their widespread
use.

Furthermore, cryptanalysis of ciphers can also try to attack some of the other characteris-
tics of ciphers, such as message digests and hashes. Since these are often used as represen-
tations of messages, such as in digital signatures, the security of the hash function will then
affect the security of the digital signature just as the function used to sign it will. Many of
the tools and techniques we develop can be used to also analyze these other constructs.

From here, we are going to explore exactly what we do to start breaking these ciphers.
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Exercises

Exercise 1. Implement MD5 (using Reference [14]), returning only the most significant 24
bits. Use the birthday paradox to find collisions. Try to find many different collisions on
many different runs, and calculate the average time to find a collision. Verify that this agrees
with the mathematics of Chapter 2.

Exercise 2. Write an implementation of the Easy1 cipher in your programming language of
choice. (This will be useful in later chapters.)

Exercise 3. Write your own implementation of DES in your programming language of
choice. Then, discuss your frustration with the conflicting numbering schemes used in this
book and how they differ from the DES specification.

Exercise 4. Write an implementation of AES in your programming language of choice. Com-
pare the running time of encryption in AES and DES.
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CHAPTER

5
General Cryptanalytic Methods

The previous chapters introduced block ciphers and several techniques for attacking them
based solely on compromising the underlying mathematics. However, not all ciphers let their
security rest solely on the difficulty of computing certain mathematical operations, such as
discrete logarithms and factoring; often ciphers are designed with some of the discussed
techniques, such as substitution-permutation networks, Feistel structures, and shift registers.

In the following sections, I discuss various general techniques that can be used to attack
ciphers of these types.

Here’s a quick review of the various forms of attacks possible:

• Ciphertext-Only Attack — This method presumes the minimum amount of information
for cryptanalysis: that we have intercepted an encrypted communication, and we wish
to discover the plaintext and, if possible, the key.

All modern cryptosystems are designed with at least this attack in mind: if a ciphertext-
only attack were not feasible, that would mean that the messages are sent over uncom-
promisable channels, so there would be no need for the encryption!

• Known-Plaintext Attack — A known-plaintext attack dictates that we have obtained a
ciphertext and know the associated plaintext with it, and we wish to derive the key. A
known-plaintext attack is still often reasonable.

• Probable Plaintext Attack — This is a more reasonable, but less useful case of the
known-plaintext attack in which certain plaintexts are more likely to be associated with
a ciphertext. For example, if we intercepted an encrypted email message, then the first
few characters could be fairly easy to guess: the from field, the date and time sent, and
so forth. Furthermore, if a message is known to be encoded in a scheme such as ASCII,
then certain bits of the message will be known, and many will appear more often than
others.

• Chosen-Plaintext Attack — A chosen-plaintext attack is one of the least realistic, but
often most powerful. It states that not only can we intercept an encrypted message,
but also we have some degree of control over what the plaintext message is for that.
Chosen-plaintext attacks often rely on creating plaintexts with certain properties with
the hope of affecting some measurable change in the ciphertext to derive information
about the key.
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• Chosen-Ciphertext Attack — An extension to a chosen-plaintext attack is a chosen-
ciphertext attack, that is, one in which we can choose ciphertexts to be decrypted with
a certain key. This kind of attack is the least realistic, especially when combined with a
chosen-plaintext attack (as we do for one of the later methods).

5.1 Brute Force

Although the majority of the time I will be discussing techniques to find the key in the
shortest time possible, we must have a reference point for our work.

Typically, the standard known-ciphertext or known-plaintext attack is simply a brute
force attack: so named because no highly developed mathematics or simplifications are nec-
essary — we simply try all possible keys and see which ones give us the correct plaintext–
ciphertext pair.

The only real optimization that can be made to brute force (at least, while still calling
it brute force) is to split up the key space into chunks and divvy them up between multiple
processors or computers. For example, all keys with the first three bits 000 could go to one
computer, while 001 would go to another computer, and so on.

For ciphers with small key sizes (say, a 40-bit key or less, depending on how computa-
tionally intensive the cryptographic algorithm is), brute force is not a terrible way to find the
key. If we wanted to break a 40-bit key in about a day, this gives us 24× 60× 60 = 86,400
seconds to work with, and 240 = 1,099,511,627,776 keys to try. Therefore, we would like to try
about 12,725,829 keys a second. A quick experiment shows that a single fairly fast processor1

can do at least 4,000,000 AES encryptions a second. Therefore, only about three or so proces-
sors could break through a 40-bit key space in a day fairly easily. Considering the growing
popularity of multi-core processors, coming up with three or more processors shouldn’t pose
much of a problem. Furthermore, Moore’s Law of transistor growth says that we can break
a key with length increased by an additional bit every two years (since computing power
doubles every other year, and an additional bit doubles the amount of work to be done) [5].
This means DES’s 56-bit key will be breakable on a desktop PC in a day around the year 2043.

Brute force has one key advantage — it is always guaranteed to find the correct key after
some length of time; this is not always true of other cryptanalytic techniques, especially those
based on statistical methods to find keys. Another advantage is ease of implementation,
which gains several additional benefits, such as ease of optimization.

5.2 Time–Space Trade-offs

In computer science, there is almost always a trade-off that must be made between running
time and space requirements. Generally, it is possible to take less time to do certain computa-
tional tasks at the cost of increasing the space requirements. For example, to solve a discrete
logarithm problem faster, it is conceivable to build vast tables of the powers of generators
in various finite fields. However, there are an infinite number of finite fields and a poten-
tially large number of generators; the particular field and generator used for a given problem

1This test was run using aesutil, written by Brian Gladman, Markus Lagler, and Tim Tassonis, version
1.07 on a pair of dual-core 2.66 GHz Intel Xeon 5150 processors under Mac OS X 10.4.
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may not even be known until a message is actually sent. Both of these prevent the discrete
logarithm from benefitting from such a time–space trade-off.

A similar argument could easily be applied to most cryptographic systems: the key, plain-
text, and even ciphertext may be unknown until a message is sent, rendering pre-computation
useless. However, there are a few tricks that can be used to perform pre-computation for any
key-based cryptographic algorithm.

The following sections show some of these techniques to trade space for time.

5.2.1 Meet-in-the-Middle Attack
A lingering question we have yet to answer is, why use 3DES? Why not just use two DES
keys back to back (i.e., 2DES)? In other words, just calculate, for two keys, K and L

C = EncryptL(EncryptK(P))

The reason this isn’t as secure as we might wish to believe is due to Diffie and Hellman’s
meet-in-the-middle attack [7]. Although we would naturally assume that by encrypting a
plaintext with one DES key and then immediately with another, we would have a theoretical
security of using a 56 + 56 = 112-bit key.

However, we can actually trade space for time very well in this particular case, using the
birthday paradox, by “meeting in the middle.” To explain this, let’s break out the cipher into
two steps:

1. D = EncryptK(P).

2. C = EncryptL(D).

The intermediate ciphertext, D, is what we are going to use to break the cipher.
The essence of the attack is to keep a large store of encrypts of the plaintext and decrypts

of the ciphertext (using only a single encryption and decryption, and not two). We then, for a
new key (J) that we want to try, will use it to encrypt the plaintext and decrypt the ciphertext
(again, using only the single encryption and decryption).

We then compare the results of the encryption with the table of previously decrypted
blocks, and decryption with the table of previously encrypted blocks we have stored. If
we get a match with either result, then we have found the two keys. For example, if the
decryption with J matched some encryption for a key I, then we know that

EncryptI(P) = D = DecryptJ(K)

and therefore,
C = EncryptJ(EncryptI(P))

Thus, we have found J = L and I = K — our two keys. The technique works vice versa if we
found an encryption with J that matched a decryption for I.

How long will it take for this time–space trade-off to work? To brute-force and calculate
for all possible keys (which are pairs of keys of size n, for a total size of 2n) would take 22n

time. However, since we are storing every value and checking it against the table, looking
for a repeat, then we can use the birthday paradox to find that it is only going to take about
the square root of that time, or 2n. However, we have to do twice as much work as normal
brute force, since we have to perform an encryption and decryption each time, which gives
us 2n+1. In other words, it takes only about twice as long as normal brute-forcing of a single
n-bit key (instead of exponentially longer).
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Of course, the trade-off comes at the cost of storage. We must store the entire table in
order to accomplish this, which grows by two entries each time. We can expect success after
about 2n attempts, each time storing two items, giving us a total of about 2n+1 space (times
the size of the key).

This attack is a good reason why 3DES uses a process of three encryptions and decryp-
tions, even when using two keys. The order of the keys’ use in 3DES is geared so that no
meet-in-the-middle attack is possible. Since the intermediate ciphertexts depend on alternat-
ing keys, there is no way to coordinate them to induce the above attack.

5.2.2 Hellman Time–Space Trade-off
Another attack, usually simply called the Hellman time–space trade-off is a chosen (or very
probable) plaintext attack, but a relatively simple one: We choose a single plaintext to encrypt
with a variety of keys [8]. This means that we should be certain that whatever ciphertext we
wish to test will correspond to the chosen or probable plaintext.

We start with some large number of keys (say, M keys of the form Ki). We also have the
chosen plaintext, P. Then, we construct a list of ciphertexts, corresponding to encrypting the
plaintext with each key, Ki:

C0
i = Encrypt(P, Ki)

(Here, we have to adjust the notation slightly so that the second argument of the encryption
function is the key.)

Now, we perform the following computation: Take each C0
i calculated from before, and

compute
C1

i = Encrypt(P, Reduce(C0
i ))

In other words, we are encrypting the plaintext again, but this time using the output of the
previous encryption as the key. If the block size of the output is larger than the key (e.g., DES
has a block size of 64, but a key size of 56, or AES with a block size of 128 and a key size of
256), then we will have to run the output C0

i through a reduction function, Reduce.
The reduction function need not be complicated; something simple, such as removing the

first few bits, will suffice. If the block size and key size are the same, then the reduction
function is unnecessary.

We then iterate the above procedure, using the new ciphertexts as keys. We will stop after
some number of times (say, S), each time computing (for a round j)

Cj
i = Encrypt(P, Reduce(Cj−1

i ))

This process generates the following flow of ciphertexts:

C0
0 → C1

0 → C2
0 → · · · → CS

0

C0
1 → C1

1 → C2
1 → · · · → CS

1

C0
2 → C1

2 → C2
2 → · · · → CS

2

...
...

...
. . .

...

C0
M → C1

M → C2
M → · · · → CS

M

For the attack, we will only actually store the starting points (C0
i values) and final entries

(CS
i values), creating two lists of ciphertexts.
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Now, the properties of this list allow us to easily ascertain the key used some portion of
the time. For example, assume that we intercept the ciphertext A of the known plaintext used
to generate our table. If A = CS

i for some i, then we know that A = E(P,R(CS−1
i )), and thus

the key used is CS−1
i !

However, we do not want to store too much — this just increases our storage requirements,
which we always want to minimize. Depending on how small our final generated list is, we
will seldom have a match after one step. In this case, we iterate using the same idea as above.
Let A0 = A be our original ciphertext; compute A1 = E(P,R(A0)). If A1 matches any of the
CS

i , then A1 = E(P,R(A0)) = E(P,R(CS−1
i )), meaning that A0 = E(P,R(CS−2

i )), thus the
key used in the original encryption matches the reduction of CS−2

i .
The process repeats, continuing until the Aj value equals a CS

i value yielding the position
to find the key, or we give up after S times. We would then have run past the left end of the
table, where we started generating.

If we learn that Aj = CS
i , then we know that A0 = CS−j

i = E(P, CS−j−1
i ), thus we know

that the encryption key is possibly CS−j−1
i . However, it is not guaranteed to be that value; a

reduction operator can produce false positives. Also, we do not know the value of CS−j−1
i ,

since we threw away all but the final values of our above tables. This means that in order to
get our potential key, we must start at C0

i and regenerate the chain up to that point.
Since we take an average of S/2 operations to find the collision and S/2 operations to

find the key, we take S operations in total.

5.2.3 Time–Space Trade-off Success
The success of this method in general relies on two values: S and M, the size of the table
and the number of iterations to perform, respectively. Obviously, if S and M are small, fewer
keys will be covered in the intermediate values of the ciphertext chains. For example, if
S = M = 225, then a total of 250 keys are pre-computed in the chains. If our key is a 64-bit
value, then we have a 250/264 = 2−14 ≈ 6.25 percent chance of finding a random key.

Clearly, then, we wish to have sizes that will yield good results. The optimal result is a
guarantee (or as much of one as we can obtain) that the key will be found using the above
algorithm. This requirement essentially means that S × M = 2 key size. Hellman suggests
in his original paper that the values be chosen so that if a key size is k (i.e., 2k total keys),
then S be 22k/3 and M be 2k/3 [8]. This indicates final memory requirements of 2k/3. To
compute the final time requirements for looking up a given key, we have a ciphertext list size
of 2k/3. Assuming that we can perform a lookup of a ciphertext in this list in inconsequential
time, and an encryption/reduction combination requires one computation step, then we can
estimate that on average it will take S/2 to find a value. With the above value of S, this means
22k/3−1.

There are two consequences of using these values: The entire keyspace must be pre-
computed, but the final result allows us to perform a brute force in two-thirds the time it
would normally take. For example, using DES (56-bit key, 64-bit block size), this would result
in memory requirements of 256/3 × 56 bits or about 2.9 MB. The average lookup time would
be 256/3 or 237.33 operations (about 173 billion).

5.2.4 Flaws
One fundamental flaw of our system is the possibility of chain collision and convergence.
Basically, if two chains “collide,” where two of the intermediate values of two different chains
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are equal at some point, they will converge and become the same chain after that point, owing
to the deterministic nature of the chain iteration function. This means significant redundant
computations and storage.

Furthermore, the larger the table, the more likely we are to converge. At some point, the
probability of a convergence is so great that having a larger table actually will only decrease
performance without providing any additional benefits.

Another problem is false positives from the reduction function. In the above example with
a 64-bit block size and 60-bit key, there are 16 ciphertexts corresponding to the same key. This
means we only have a 6.25 percent chance of getting the correct key on the first try. Each false
positive requires an additional ≈ S/2 operations to check the solution.

Finally, we also have the problem of loops. Our particular chain, through the reduction
function, might find itself in an infinite loop between some set of values. This would be
equivalent to a self-convergence.

5.2.5 Multi-Table Trade-off
There is a remedy for at least some of the collisions in the above scenario, as well as to address
the problem of the large monolithic table. We can reduce the possibility of collisions by hav-
ing multiple, smaller tables, each using a different reduction function. This way, converging
chains between tables would all but be eliminated (they might collide, but it is nearly impos-
sible for them to converge). This also increases the complexity of the search, and possibly the
memory requirements.

Generally, the recommendation has been to have each table length be equal to the number
of tables, so that both values are S. This would be equivalent to having a larger table of size
S2, but with a larger probability of success.

The multi-table approach is a universally adopted measure to improve the time–space
trade-off, since it takes the same amount of space and drastically increases the success rate.

However, there is a potential problem here: we now have S reduction functions to calcu-
late. This gives us a slightly higher running time of S2 (S for the normal lookup, and S for
the number of tables we have to do it on). However, in this case, since our S is the square root
of the original S, the time requirement is actually the same as before, averting the potential
problem.

5.2.6 Rivest’s Distinguished Endpoints
Ronald Rivest suggests an optimization on the above system to reduce the size of the stored
values [6]. That is, if we stop iterating a chain of the above whenever we get a ciphertext that
has some feature we are looking for (e.g., the first 5 bits are all zero) and some minimum of
iterations has been performed, then we will save quite a few bits of storage. For example, if
we have a 64-bit block size and agree to stop whenever the first 4 bits of the ciphertext are
zero, then we shrink the final size of our table by 4/64 = 6.25 percent.

Other than the obvious advantage, there is an additional benefit: this method also gives
some hope of detecting collisions. If the computations stop at some predetermined char-
acteristic, two chains that collided have a chance of stopping at the same point, depending
on when they collided and converged. What to do when collisions are detected is another
matter, but often it will be redoing the computation on a fresh, new starting ciphertext.

However, there are some disadvantages to the distinguished endpoint method. Waiting
for a distinguished point to occur can be dangerous: It could occur very far from where the
optimal endpoint is. If it occurs well before the endpoint is reached, then many keys in the
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space will be left untouched in our computation. If it occurs well after, then we are wasting
time to compute it. The table was constructed to optimally hit keys, thus any extra keys will
most likely be repeats. Also, additional computations increase the likelihood of collisions.

However, despite these drawbacks, the space-saving feature and collision detection prop-
erties have managed to make Rivest’s method integrated into almost every implementation
of the Hellman time–space trade-off.

5.3 Rainbow Tables

Rainbow tables [10] were designed to counteract several of the fundamental drawbacks to the
standard Hellman time–space trade-off. Particularly, rainbow tables are constructed to avoid
collisions and to slightly increase the probability of success using the time–space trade-off.

Rainbow tables achieve this success by slightly changing the way the functions generate
the next key in the list. Specifically, instead of using the same reduction function for every
single iteration, rainbow tables use a different reduction function each time.

This gives us a rainbow chain that looks like

C0
0

r0→ C1
0

r1→ C2
0

r2→ · · · rs−1→ CS
0

Similar to the original time–memory trade-off, we will construct these chains into a larger
table, or size S. However, there is no need to do so for multiple tables, since we have no need
of more reduction functions. We can also do away with distinguished endpoints, giving us a
better bound on the time required for the key recovery (and a slightly higher success rate).

Recovering a key is an identical process to the standard time–memory trade-off, only tak-
ing into account that different reduction functions are used in each step. Another difference
is that, since we have only one reduction function to compute each time, we will have less
to do than a multi-table approach. In this case, to search for a key, we have to apply reduc-
tion functions in successive order: once, then twice, then three times, and so on, giving us
a total of S(S− 1)/2 times to find the appropriate entry, and then S/2 operations to recover
the key (working from the starting point). Adding these two values together gives us S2/2
operations, which is half of the standard table method.

5.3.1 Advantages of Rainbow Tables
Rainbow tables give us a few advantages:

1. Collisions have less impact. If two chains collide, meaning they have the same value
at some point, there will not be an issue if they collide at different parts in the chain.
In this case, they will not merge, since different reduction functions will be used. A
merge can still occur if two chains have a collision on the exact same iteration (and will
therefore use the same reduction functions).

2. Distinguished endpoints are not necessary to detect collisions and merges. If a true
merge happens, then they will always stop at the same point at the end (since they
would have had to have collided at the same iteration, and therefore would be in lock-
step the whole way), and one chain could be removed.

3. There is a significant amount of speedup (approximately twice as fast).
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A final note made in Reference [10] is that multiple rainbow tables can be used. The
advantage of having multiple tables is a higher success rate, at the higher cost of maintaining
multiple tables (both in computation time and storage space). One table, for example, might
give an 80 percent coverage of the keys, whereas several tables could provide up to 99 percent
coverage.

5.3.2 Microsoft LAN Manager Password Hash
One popular example of the use of rainbow tables is in breaking the cryptosystem used by
Microsoft LAN Manager. Although LAN Manager has not been actively used in years, the
cryptosystem it uses is still in use for compatibility reasons. The LAN Manager used the
following cryptosystem to hash a password for later verification against user input.

The first step is to split the user’s password into either one or two 7-byte chunks (i.e., 56
bits). It also only allows letters and digits for the password (and converts all of the letters
to uppercase). The next step in the hashing is to use these chunks to create two DES keys,
which are then used to encrypt the ASCII string “KGS!@#$%”. This string is represented in
hexadecimal as the 8 bytes:

4b 47 53 21 40 23 24 25

Assuming that we have the final hash, we wish to find a password that gives this hash.
With 26 letters and 10 numbers, we have 36 different characters possible in the password.
With seven positions, we then have 367 = 78,364,164,096 different possible ciphertexts corre-
sponding to the original plaintext. With each ciphertext occupying 64 bits, it would require
626,913,312,768 bytes (about 583 GB2) to store a table of every possible password. Only in the
past couple of years has this kind of storage been available. Even so, it may not be practical
to store quite so much. We also would not want to perform 367 encryptions for every key.

Luckily, we could use rainbow tables that will allow us to easily break this in far less time
and space. Oechslin even used this problem as one of the first demonstrations of rainbow
tables [10]. The rainbow table attack demonstrated used five tables, each having 35,000,000
rows (chains) with 4,666 columns (elements in the chain). Using such a table, the passwords
were cracked in a matter of seconds.

5.4 Slide Attacks

A generally held belief among cryptographers is that merely increasing the number of rounds
of even a weak cipher will increase the strength of the cipher. Although this may be true
against certain attacks, such as those that rely on probabilities of each individual round
(where the number of rounds can dictate how effective the attack is), it cannot be taken for
granted.

One attack in particular can work on any number of rounds, since it takes advantage of
the key schedule. This attack is called the slide attack [2] (name chosen by Bruce Schneier).
It can be used as either a known-plaintext or chosen-plaintext attack.

The basic attack, as described in Reference [2], requires two properties. First, the attack
requires that the cryptographic algorithm have a weak round function — “weak” is used to

2Despite what many hard drive manufacturers like to advertise, a gigabyte (GB) is 230 = 1,073,741,824
bytes.
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· · ·

· · ·

Figure 5-1 A slid pair for a very simple cipher.

mean that, if given two blocks, A and B, and a found function, F, it is computationally “easy”
to tell if B = F(A), regardless of the key used. Although this requirement seems strong,
many ciphers are built around weak round functions.

The second requirement is less reasonable. The attack works only with fairly weak key-
scheduling algorithms, such as using the same key every round, or alternating between two
keys every round.

Although these requirements may not be practical for most ciphers, slide attacks have
been used successfully on several ciphers, including variants of Blowfish and DES (some of
which were meant to strengthen their security) [1, 2].

At this point, we will also assume that each round function is identical. (For most ciphers,
this will not be quite true, since each round will depend on a different portion of the key
schedule.) Hence, we will refer to them both as F.

The known-plaintext strategy is to collect a large number of known plaintexts and their
corresponding ciphertexts. The goal is to find two plaintext–ciphertext pairs, say, (P, C) and
(Q, D), such that Q = F(P). As we can see from Figure 5-1, if Q = F(P), then we also know
that D = F(C), since they are only off by 1.

When these two pairs of plaintext–ciphertext pairs have this property, we call them a slid
pair.

The useful thing about a slid pair is that, if the round function is very weak (like we
assume), then we can find the key very easily from a slid pair, since we have two simple
relationships:

Q = F(P), D = F(C)

Both the plaintext pair (P, Q) and the ciphertext pair (C, D) give us information that we can
use to derive the key.

Let’s move to a practical example of this. Consider the FEAL cipher, with the round
function:

f 1 = S(α1 ⊕ β0 ⊕ α0, α2 ⊕ β1 ⊕ α3, 1)

f 2 = S(α2 ⊕ β1 ⊕ α3, f 1, 0)

f 3 = S(α0, f 1, 0)

f 4 = S(α3, f 2, 1)

If we want to check for a slid pair, the only unknown variables would be the β’s.
This means for the second step, we get

f 2 = S(α2 ⊕ β1 ⊕ α3, f 1, 0)

And if we already know the value of f 2, α2, α3, f 1, then we can easily calculate β1 by reversing
the S-box and plugging in the appropriate values.
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Similarly, we can use the first step to derive β0, since we will know all of the other parts.
Once we know the two β values, we can calculate F(A) and check to see if it matches

up with B. If everything matches up, then we have, in all likelihood, found a slid pair. We
then perform the same derivations as above on the ciphertexts to determine more of the key
schedule.

With some luck, finding the slid pair will reveal enough bits of the key to allow brute-
forcing the remaining bits. For example, several bits of the output of the round might be
independently modified by portions of the key material, sometimes by direct XOR, allowing
the key bits to be easily derived.

5.4.1 Slide Attacks on Feistel Ciphers
Finding a slid pair with a Feistel cipher is not difficult. After one round of encryption on
a Feistel cipher, the output will have half of the bits the same as the input (the old left half
becomes the new right half).

With a known-plaintext attack, we can simply look at the slid pair’s plaintexts and cipher-
texts to check if F(P) = Q and F(C) = D. Finding the slid pair is a simple matter of sorting
tables of plaintexts and ciphertexts so that matches can be quickly found.

There is the possibility of a false alarm here, but it is not too significant; on average, we
can expect one false alarm for every real slid pair.

This known-plaintext attack requires about 2n/2 plaintext–ciphertext pairs (half of the size
of the cipher, which is also the size of the Feistel structure), and about the same amount of
work.

For a chosen-plaintext attack, we do a very similar attack. First, we choose a random n/2
bit value, x, for one of the halves, and then we select 2n/4 random values for y to form the
plaintext (x, y) (where x is the left half, y is the right half).

For our second plaintext, we again use a fixed x and generate a value z that is completely
random. We generate another 2n/4 of these values and store the plaintext (z, x) (this time, the
right half is x, and the left half is z).

We also calculate the encryptions of both plaintexts to form the pairs and store these pairs
in a large table. With this many pairs, we expect to find about one slid pair.

An individual Feistel round is usually fairly weak, thus when a slid pair is found using
either method, we can usually expect to get the entire key, or most of it, fairly easily.

5.4.2 Advanced Slide Attacks
One issue with standard slide attacks is that ciphers with two or more rounds of self-similarity
tend to make the attack less practical. Self-similiarity means that the cipher switches between
two or more round functions or keys (or both) every round. To combat a two-round, self-
similar cipher with a standard slide attack, we would have to slide two rounds instead of one,
which makes the attack more difficult.

There are a few tricks that can be used to combat these problems [1]. The first is called
the complementation slide attack. We perform a complementation slide attack by, instead of
sliding by two rounds, as we suggested before, sliding by one.

The change comes in that we will now have to look for a different type of slid pair.
Previously, we looked for a slid pair so that F(P) = Q, but now we want one so that F(P)⊕
Q = ∆, where ∆ is not zero.
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In these cases, if we find multiple slid pairs, we will always have the same ∆. Therefore,
identifying slid pairs is still fairly easy.

To derive the key, we can analyze the value of ∆. Typically, ∆ will be equal to something
along the lines of the XOR of the two round subkeys, giving us a lot of information that can
be used to break them (such as by doing an exhaustive search against half of the bits to derive
the rest).

Another property of two-round self-similarity is that the decryption process looks nearly
identical to the encryption process: they just start one round off from each other, since they
do the rounds in reverse order. We can use this property in a method called sliding with a
twist [1].

The twist is that we will look at the second plaintext–ciphertext pair of the slid pair
backwards to look for the slid pair. The two-round self-similarity will then give us F(P) = D
and F(C) = Q, and allow us to derive a key very similarly to above.

Consider the above case, only with four-round self-similarity (four distinct rounds, per-
haps with different keys used each time). The above complementation attack could be used
by sliding two rounds to achieve the similarity, but this would again be decreasing our effec-
tiveness.

Both methods can be combined, creating a complementation slide with a twist [1]. These
two methods combined will allow us to develop a better attack against that four-round self-
similar version.

Essentially, we are looking for a fixed difference, and we are using the second part of the
slid pair in reverse order. This will line up the keys submitted to the Feistel round function
as follows (the top is the encryption, the bottom is the decryption, slid once):

K0 K1 K2 K3 K0 K1 K2 K3 K0 . . .
K3 K2 K1 K0 K3 K2 K1 K0 . . .

With this slid pair then, all of the differences cancel out except for the K1⊕ K3 pairs. We then
can look for a ∆ of K1 ⊕ K3 and use it to derive the key.

5.5 Cryptanalysis of Hash Functions

One goal of hash functions is to generate a digest of a source that cannot easily give informa-
tion about that source (and ensure the one-wayness of the hash function). The other goal is to
ensure that when an attacker knows the source text and its corresponding hash, they cannot
easily produce another text that produces the same hash, especially for texts that are similar
to the original source text.

Hence, the main goal of cryptanalysis of hash functions is to either obtain information
about the original source text, or to produce a duplicate hash. A pair of messages with
hashes is called a collision. There are three types of attacks to obtain collisions that we will
be concerned with. In increasing order of difficulty, they are

1. Finding two messages that produce the same hash, with no necessary link to any other
particular item. This is the “easiest” of the goals, since there are no constraints on the
output digest. This is a standard collision attack.

2. Finding another message that generates a target hash. The target hash would proba-
bly belong to some important item. This is called a pre-image attack. (This term is
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taken from mathematical terminology, where the hash would be called the image of the
message, and the message is called the pre-image of the hash.)

3. Finding another message that generates a target hash, with the original item being a
plausible alternative to some target original item. This is an extension of the pre-image
attack.

For example, if a Word document contains some instructions and a hash is calculated,
someone might be interested in swapping it with a Word document with different
instructions, but have it produce the same hash. This is the hardest collision to produce.

The simplest method on the first and simplest kind of collision is to simply keep choosing
random data, calculating the hash, and storing both. The birthday paradox says that we only
need to wait and store about

√
n entries (for a hash size of n) before we can expect to find a

collision, and hence any better method should have run time or storage less than
√

n.
For the other methods, we do not have the birthday paradox to help us out, thus the

standard brute force would require a run time or storage of n. Therefore, any technique
having a run time or storage less than n would be an improvement.

As shown above, checksums and CRCs are not very appropriate for digital signatures
and other security purposes. The current standard is to use the more sophisticated hashing
algorithms, like MD5 and SHA-1 for these purposes.

The intricate churning used in them makes it very difficult to map anything in the mes-
sage digest to say anything about the original message. Hence, for both MD5 and SHA-1, it
is still a difficult task to find collisions or any other kinds of weaknesses in these algorithms.
The upper limit on time is governed by the birthday paradox; thus, for example, the 160-bit
hash of SHA-1 would require a store of 280 message digests before a better-than-50 percent
chance of finding a collision. Therefore, any method to find collisions should ideally work in
less time than this.

Of course, because of to the popularity of the two algorithms, there is a lot of attention
given to them by cryptanalysts.

Going into the full analysis of hash functions is beyond the scope of this book. Many
of the principles used in Chapter 7 are applied to the hash algorithms, including tracing
difference paths through the hash to generate collisions

To date, the two best collision attacks against SHA-1 [13] can generate collisions in less
than 269 operations (with an improvement to 263), and a recent (2006) attack produced a
collision with approximately 235 time [4] (with the expected run time at the time the paper
was written, in 2006, of 18 hours). Both attacks are better than the 280 operations needed for
the birthday attack.

For MD5, the current best collision attack known can produce a collision in less than a
minute on a modest 2006-era PC [9].

In light of the ever-raging battle between hash algorithm maker and hash algorithm
breaker, we wish to emphasize the following point.

Principle of Multi-Hash Security: Computing cycles and storage space are getting cheaper.
Using multiple hashing functions can exponentially increase the security. Therefore, when
possible, store several hashes and redundancy checks of data.

This principle takes advantage of one feature that is not present if one simply increases
the length of the returned hash function: Using different hash functions with different design
philosophies means that, with any luck, vulnerabilities found in one hash function (such as
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the ability to generate texts with the same hash) won’t work on more than one hash at a time;
hence, only one of the hashes used will be compromised. If a hash is simply extended to
more bits, it’s possible that the underlying structure is still weak, and the hash can still be
compromised.

5.6 Cryptanalysis of Random Number Generators

A primary reason for cryptanalyzing random number generators is to try to determine infor-
mation about a key used in a standard cipher.

For example, in a classroom experiment that I led, students in the class all had accounts
to trade goods in a virtual economy. During various discussions, the students cleverly asked
me how the account numbers (10 decimal digits) and RSA keys (hundreds of decimal digits)
were generated. I informed them that I had just used the standard Java random number
generator, and informed them of a rough guess of the time at which they were generated.

The standard Java method at the time3 was to use a linear congruential random number
generator seeded with the current time in milliseconds to generate numbers. Considering
that they had a good guess at the time, they could try various values for the system clock
at the time and try to find the seed by seeing if their own account numbers appeared in the
output.

Assuming a class size of 100 students, with about 14 digits per account number (there
was also a 4-digit password generated), and 3,600,000 milliseconds per hour, there are

100× 14× 3,600,000 = 5,040,000,000

digits to generate and check to account for all of the possible seeds that could occur in 1 hour.
With a few processors, it is very possible to chew through a few hours of the possible

random numbers in just a few days at most.

This example illustrates one of the methods for breaking linear congruential random
number generators: guessing the seed. Finding out the way in which the seed is generated
and attempting to re-create it will work on this as well as any other types of ciphers that rely
on a seed.

Another method is to use mathematical properties to determine the values of a, c, m, for
the standard linear congruential method:

X ← (a× X + c) mod m

For example, if three consecutively generated values of X can be discovered (say, A, B, C),
then it is fairly straightforward to solve the system of equations:

C ≡ (a× B + c) mod m
B ≡ (a× A + c) mod m

Here, we have two equations and two unknowns (assuming m is known). If we subtract the
second equation from the first (i.e., subtract the sides from the corresponding size), we obtain

3Unfortunately for the students, I was using a beta version of Java 1.5, which used the current time in
nanoseconds for the seed. In addition, the seed is added to an integer that is updated for every time the Java
random number generator is used, so that even knowing the time would not provide sufficient information
to find the account numbers.
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the relation
(C− B) ≡ (a× (B− A)) mod m

If we knew that m was a prime, then we could multiply (C− B) by the inverse of (B− A)
(modulo m), and obtain a. We can then compute c = B− a× A and check to make sure that
c = C− a× B.

If m is not prime, or if we do not know m at all, then there are other fast methods to find
all of the parameters (see References [3] and [11]).

5.7 Summary

The methods described in this chapter, for the most part, are not successful with only one
cipher or type of cipher. I don’t delve into the depths of how each cipher works, for example,
to use rainbow tables. The techniques are nearly identical for any cipher.

Random number generators can also play an important part in cryptanalysis, thus a brief
example was given to show sample cryptanalysis of this. For more on cryptographic uses of
random number generators, see Reference [12].

In the next two chapters, I am going to discuss several methods that do rely heavily on
the internal structure of individual ciphers. While the general principles of the attacks are
the same, every attack will have to be uniquely constructed to fit the properties of the cipher.
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Exercises

Exercise 1. Can the meet-in-the-middle attack be extended to a normal cryptoscheme? For
example, could we use this to reduce the amount of computation required to brute-force DES
down from 256 by trading space in a similar way? Why or why not?

Exercise 2. Write an implementation of a rainbow table attack against the Microsoft LAN
Manager password-hashing scheme.

Exercise 3. Since the round functions of the Easy1 cipher are identical, attempt to mount a
slide attack on, say, a 20-round version of this cipher.
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CHAPTER

6
Linear Cryptanalysis

The previous chapters introduced some general methods of analyzing block ciphers. The
methods were “general” in that there was not a lot of analysis of a specific cipher; the attacks
work equally well on many different classes of ciphers. Any errors exploited weren’t so much
inherent to the ciphers: detailed analysis of the ciphers was not what yielded these attacks.

While there are many cryptanalytic strategies that might rely on deep analysis of a cipher,
I wish to focus on a few different classes of these ciphers. In this chapter, I’ll discuss a very
important class of newer cryptanalysis methods — linear cryptanalysis.

Linear cryptanalysis is a known-plaintext attack first detailed by Mitsuru Matsui and
Atsuhiro Yamagishi in the early 1990s against FEAL and DES [4, 5]. This formal method
attempts to relate the inputs and outputs of algorithm components together so that solving
a system of linear equations will yield information about the bits of the key used to encrypt
them.

Linear cryptanalysis is also a statistical attack: It is not guaranteed to work in every single
case. However, it does work most of the time, which I’ll define more precisely below.

Previous methods did not rely on deficiencies of the cryptographic algorithm, at least in
the same way. The methods in this and the next chapter are designed to take advantage of
weaknesses in some of the cipher structures.

Ideally, a cipher would have nearly perfect diffusion and confusion; that is, there would
be no easy way to make predictions about the output based on the input without knowing the
key. However, no cipher can have truly perfect diffusion; there will also be some imperfections
in the structures. The nature of these weaknesses and how to exploit them yield the different
attacks.

This chapter explains and demonstrates the method of linear cryptanalysis. We also look
at how effective the method is against many ciphers. Finally, I show several extensions and
alterations of the method used to increase its effectiveness.

6.1 Overview

Linear cryptanalysis was first explained and demonstrated in References [4] and [5]. It is
a known-plaintext attack, meaning that we will have some set of plaintexts and associated
ciphertexts, all encrypted with the same key, which is what we wish to discover. Another
good source on linear cryptanalysis (and differential) is Howard Heys [1], which provides a
nice development framework for learning this technique through simpler ciphers first (which
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is how I’ll approach the subject).
So far, we know well what the term cryptanalysis means. The “linear” in linear cryptanalysis

stems from the fact that we want to manipulate and solve linear binary equations. For linear
binary equations, this means the equations looks like

A⊕ B⊕ C⊕ · · · ⊕Y = Z

Because of the commutativity of the XOR operator, this equation is the same as

A⊕ B⊕ C⊕ · · · ⊕Y⊕ Z = 0

(obtained by taken the previous equation and XORing Z to both sides).
These binary equations will be built to relate the inputs and outputs of various portions

of the ciphers. For example, we might wish to have an equation of two input bits of a round
input — X0 and X2 — with three output bits of a round — Y1, Y2 — and Y4, which would look
like

X0 ⊕ X2 ⊕Y1 ⊕Y2 ⊕Y4

This equation will most likely not be true all the time, but some of the time. We will gen-
erate many such equations, and eventually, we will use these relations to build up a linear
“approximation” of the entire cipher, where the final input bits and output bits will consist
of the key, plaintext, and ciphertext. The more accurate the approximation, the less work we
will have to do to figure out the key.

One quick note: the equations don’t quite work out if we have an expression equal to 1
(instead of 0), such as

A⊕ B⊕ C = 1

Technically speaking, this is not a linear equation, but an affine equation (since it uses a
nonzero constant).

Sometimes people refer to these equations as “parity” equations, since parity is the sum
of all of the bits of a number, and we are interested in the parities for the left-hand side and
the right-hand side to match.

The linear cryptanalysis method models the cipher as a linear equation, similar to the
ones above, using bits of the plaintext, ciphertext, and key as the variables in the equation.
For most ciphers, the ciphertext is sufficiently random-looking, with regard to the plaintext,
so that any arbitrary linear expression should be true about half the time. For example, when
we examine any one of the ciphertext bits, we should see that the bit is 0 half the time and 1
the other half of the time.

Linear cryptanalysis attempts to find expressions that aren’t quite as random: The proba-
bility of getting a 0 or 1 isn’t quite 1/2. As we find expressions with probabilities farther from
1/2, the success rate of determining the key from these expressions goes up.

6.2 Matsui’s Algorithms

Matsui proposes two algorithms for linear cryptanalysis, although only one is regularly used.
Assume that we have some equation involving bits of plaintext, ciphertext, and a key,

such as
P0 ⊕ P2 ⊕ · · · ⊕ C1 ⊕ C2 ⊕ · · · = K1 ⊕ K3 ⊕ · · ·
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(although we haven’t discussed how to obtain such a representation).
Assuming the bits have good diffusion and confusion characteristics, this equation is true

fairly randomly and unpredictably, that is, happening about half of the time. When the events
have probability different from 1/2, we say that this difference is a bias. If p is the probability
that the above is true, then |p− 1/2| is the bias — that is, the difference between p and 1/2,
ignoring the sign of the result (the absolute value).

Assuming a known-plaintext attack, we would know several values of the P and C bits,
and we would be looking for the K bits. Matsui’s “Algorithm 1” uses the above equation,
along with its bias, to get us a single bit of information about the key itself.

This algorithm, and the next, both use the principle of maximum likelihood: If it’s the
most probable (or one of the most probable) causes, then assume it is.

Matsui’s Algorithm 1. Assume that we have a linear expression of the form:

Pi1 ⊕ Pi2 ⊕ · · · ⊕ Cj1 ⊕ Cj2 ⊕ · · · = Kk1 ⊕ Kk2 ⊕ · · ·

Also, we must know the probability, p, of this equation holding true.

1. Collect many valid plaintext–ciphertext pairs for a particular key (the amount of which
to be determined by the probability of the equation, specified below).

2. For each plaintext–ciphertext pair, calculate the left side of the above linear expression.
Let T be the number of times the left side is equal to 0.

3. If T is more than half of the pairs and p is greater than 1/2, then we guess that the right
side (the K bits XORed) is 0.

4. If T is less than half of the pairs and p is less than 1/2, then we also guess 0 for the
XOR of the K bits.

5. Otherwise, guess that the XOR of the K bits must be 1.

These last three steps are there because we are assuming that our bias and probability are
accurate, meaning that if p is less than 1/2, we expect that the equation is usually false, and
if p is greater than 1/2, then the equation is usually true, which would require the above
scenarios to work out, for example, since if we expect it to be false and the left side is 0, then
the right side must be 1 so that the whole equation is false, and so forth.

This algorithm doesn’t offer a whole lot: We get a small amount of information for some
collection of plaintext–ciphertext pairs. If we had a large collection of plaintext–ciphertext
pairs as well as several such equations with large biases, then we might be able to construct
a set of equations of key bits, which could possibly be used to derive the key bits themselves.

This isn’t always practical. For most good ciphers, the biases for the full cipher will
usually be very small (in that any linear expression will usually be true close to half the time).
Luckily, Matsui issued another algorithm for extracting key bits, which relies on, potentially,
only a single number of linear expressions, but a large number of plaintext–ciphertext pairs.

The idea is to have another equation, similar to the one above. However, instead of
counting how many times the left-hand side is true, we will try every value of the K bits and
count how many times the overall equation is true.

Matsui’s Algorithm 2. Assume we have a linear expression of the form:

Pi1 ⊕ Pi2 ⊕ · · · ⊕ Cj1 ⊕ Cj2 ⊕ · · · = Kk1 ⊕ Kk2 ⊕ · · ·
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Also, we must know the probability of this equation holding true, p.

1. Collect a large number of plaintext–ciphertext pairs for a single key that we wish to
obtain (again, depending on the probability of the equation).

2. For each candidate set of key bits, calculate a T-value, representing the number of times
that the linear equation holds true with the plaintext–ciphertext pairs.

3. Select the candidate keys that are the farthest “away” from half the number of pairs.
Thus, if N is the number of pairs, calculate T − (N/2) for each candidate, with the
end result being some set of key candidates with |T− (N/2)| (the absolute value of the
difference) being maximized.

The point here is we are trying all values of key bits, trying to find the most likely candidate
set of them. For example, if we had a 64-bit key and we managed to find an expression
involving 32 bits of the key that required, say, 220 operations per key, then we would have
O(220 × 232) = O(252) operations to derive 32 bits of key. We could then just simply brute-
force the other 32 bits [in O(232) time], which would be much easier than the previous O(252)
operations. Essentially, we would then have derived the key in less than O(253) operations.

The following sections help us to find these linear expressions, as well as estimations on
the number of plaintext–ciphertext pairs and the amount of time and space that this approach
will take.

6.3 Linear Expressions for S-Boxes

The first step to constructing a full linear equation to use with Matsui’s algorithms is learning
how to calculate simple linear expressions and how to determine their biases.

It’s easiest to first look at an example. Consider the following 3-bit S-box

[3, 7, 2, 4, 1, 5, 0, 6]

(i.e., substitute 3 for 0, 7 for 1, 2 for 2, 4 for 3, etc.).
Finding linear expressions of S-boxes requires us to find equations involving the input

bits and output bits, such as X0 ⊕ X2 = Y1 ⊕ Y2. We can run this linear equation against
all possible input values (0–7) of the example S-box, counting it true 2 out of 8 times [for
S(3) = 4 and S(7) = 6], giving us a probability of 1/4 = 0.25. The bias, usually abbreviated
ε, is then ε = (2− 4)/8 = −1/4. Figure 6-1 shows a small S-box with a linear expression
drawn over it.

S-box

Figure 6-1 Graphical representation of the expression X2 = Y1 ⊕ Y2 on a 3-bit
S-box.
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Keeping in mind the idea behind Matsui’s Algorithm 2, we try every possible set of input
bits and output bits and measure the bias. We are interested most in linear expressions with
the largest amount of bias (regardless of sign).

Since we have three possible input bits and three possible output bits that we may either
keep or omit in each linear expression, we then have to look through 23× 23 = 23+3 = 26 = 64
different expressions. Furthermore, we have to try all possible values of the input–output
value pairs which is 23 (since we have 3 input bits, and the output is completely determined
by them). This gives us 26 × 23 = 29 = 512 operations in total on the S-box.

Generalizing this, with an n-bit S-box (n-bit input, n-bit output), we have to perform
several operations equal to 23n.

Using our previous idea (from Chapter 5) that 240 is not too taxing an amount of work,
we find n such that

23n = 240

This gives us n = 13, which would mean we could reasonably analyze all of the relationships
in a 13-bit S-box. The industry standard seems to be to use 8-bit S-boxes or less, so we are all
right for now.

Now that we understand calculating biases for linear expressions, we can then choose
every possible linear expression. As such, we will be left with a large listing of biases, as
shown in Table 6-1.

Table 6-1 A Few of the Linear Expressions from a Simple 3-Bit S-Sox

Equation Bias (ε)

0 = 0 1/2
X0 = Y0 0
X0 = Y1 0
X0 = Y0 ⊕Y1 0
X0 = Y2 1/2
X1 = Y0 −1/2
X2 = Y1 ⊕Y2 −1/4

...

A few things to note: the highest value is (positive) 1/2, and the smallest is −1/2, which
are both good values (they mean that the equation is always true or always false, respectively).
However, the valid linear expression 0 = 0, while always true (with bias 1/2), is meaningless;
of course, it is always true, but it yields no information.

In general, we want to focus on the values that have a high bias and that involve the least
possible number of bits. Involving fewer bits in the input and the output helps us to manage
the eventual linear cryptanalysis, which is composed of many of the linear expressions built
on each other.

However, the syntax shown in Table 6-1 is a bit cumbersome. It’s good to see exactly
which bits affect which bits, along with the associated bias, but it isn’t very easy to parse.

A notation used by Matsui is very helpful in this case. The representation of the input and
output bits will be a pair of numbers (usually written in hexadecimal). A bit being present in
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the linear expression would be translated to a 1 (in the binary representation) of the number,
and a bit not being present translates to a 0.

For example, if the input side is X0 ⊕ X2 ⊕ X3 ⊕ X6, we would use the binary number
01001101, or 4D in hexadecimal. For no particular reason, we usually write the linear
expression starting with subscript 0, then 1, and so forth, while we translate this to mean bit
0, bit 1, and so forth, which are normally represented in most significant bit order in the final
number.

Therefore, for the last row in Table 6-1, we have the expression X2 = Y1 ⊕Y2. This would
correspond to the number pair (3,5).

The above compact form of representing the equations can allow us to more easily analyze
S-boxes by constructing tables, with the row number representing the input bits, the column
number representing the output bits, and the entry in the table corresponding to the bias. For
example, Table 6-2 shows the complete set of linear expressions of the previous 3-bit S-box.

Table 6-2 Complete Set of Biases for All Possible Linear Expressions on the Sam-
ple 3-Bit S-Box

Y
0 1 2 3 4 5 6 7

X

0 4 0 0 0 0 0 0 0
1 0 0 0 0 4 0 0 0
2 0 −4 0 0 0 0 0 0
3 0 0 0 0 0 −4 0 0
4 0 0 −2 2 0 0 −2 −2
5 0 0 −2 −2 0 0 −2 2
6 0 0 −2 2 0 0 2 2
7 0 0 2 2 0 0 −2 2

The entries with the largest biases (in magnitude) are bold. Ignore the upper-left
entry, which represents 0 = 0.

Large tables are good for seeing the characteristics of an S-box, although ordered listings
of individual entries spelled out (as above) are still useful for building larger linear expres-
sions. For example, a graphical representation of AES’s S-box is shown in Figure 6-2, where
there would be too much information for a large table, and a listing of top entries would be
more useful.

In S-box analysis tables, we are looking for entries with large biases, either negative or
positive. If all of the entries are small, then the S-box does not have a very linear structure,
and it may make linear cryptanalysis on the cipher difficult.

Notice that when we are analyzing these potential linear expressions, we don’t have to
worry about key bits, or collecting plaintext–ciphertext pairs, as we will for the full technique.
This analysis is nonrandom and fairly straightforward. Granted, we do have to try every
possible input possible for the S-boxes, but usually this is a fairly small number (in the grand
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Figure 6-2 Linear correlation between the input and output of AES’s S-box (with
darker values meaning higher correlation, since the table would be too large to
show individual numbers). This shows a great deal of diffusion between the input
and input, since the color is spread all over.

scheme of things).

6.4 Matsui’s Piling-up Lemma

Now that we have linear expressions for S-boxes, how do we combine them to perform linear
cryptanalysis, and what kinds of results will we get? The simple answer is that we trace the
output bits of one S-box to be the input values of other S-boxes, repeating until we have an
expression relating only plaintext bits, ciphertext bits, and key bits.

But what happens when they combine? With more rounds, the biases of the overall
expression are going to change, but how? Our natural inclination is that the biases will
be multiplicative — meaning that an expression’s bias of 1/4, when combined with another
linear expression of bias 1/3 (lining up their inputs and outputs appropriately) would be
1/4× 1/3 = 1/12. This is approximately what happens, but not quite.

Matsui shows that the linear expressions “pile up” in a different sort of way [4].

Piling-up Lemma. Assume that we have n independent linear expressions, X1, X2, . . . , Xn,
with associated biases ε1, ε2, . . . , εn. We also need to assume that they are random, as we
have no real preconceptions of their values, and binary, in that they output 0 or 1. Then, the
bias of an aggregate binary, linear expression,

X1 ⊕ X2 ⊕ · · · ⊕ Xn
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is the expression
ε1,2,...,n = 2n−1 (ε1 × ε2 × · · · × εn)

(where ε1,2,...,n is the new bias). Remember that this bias is relative to 1/2, meaning that the
probability of it happening is 1/2 plus the bias.

Matsui’s piling-up lemma can be easily proven by mathematical induction, with the as-
sumption that each linear expression is independent. It isn’t necessary to go into the full
proof here — I refer the interested reader to Reference [4].

Since the underlying expressions will not have probabilities of 100 percent or 0 percent, we
cannot construct completely exact and precise linear expressions. Instead, we try to construct
expressions that are true as often (or as seldom) as possible; hence, we often call these expres-
sions approximations. Matsui’s piling-up lemma provides us with a means of determining
how good our approximation is (if it has a very large bias, either positive or negative).

6.5 Easy1 Cipher

Now let’s return our attention to the slimmed-down, simple cipher called Easy1 introduced
above.

Every portion of the cipher will use the same S-box, although linear cryptanalysis works
quite well regardless of the variety and number of S-boxes used. We keep it to one S-box to
make the analysis a little easier. To reiterate, our S-box is represented as

[16, 42, 28, 3, 26, 0, 31, 46, 27, 14, 49, 62, 37, 56, 23, 6, 40,
48, 53, 8, 20, 25, 33, 1, 2, 63, 15, 34, 55, 21, 39, 57, 54, 45, 47,
13, 7, 44, 61, 9, 60, 32, 22, 29, 52, 19, 12, 50, 5, 51, 11, 18, 59,

41, 36, 30, 17, 38, 10, 4, 58, 43, 35, 24]

Furthermore, a permutation will take place in between rounds to accomplish more diffu-
sion. Here is the permutation used throughout the cipher:

[24, 5, 15, 23, 14, 32, 19, 18, 26, 17, 6, 12, 34, 9, 8, 20, 28, 0,
2, 21, 29, 11, 33, 22, 30, 31, 1, 25, 3, 35, 16, 13, 27, 7, 10, 4]

Recall also that six 6-bit S-boxes feed into the 36-bit P-box, which is then XORed with an
18-bit key (the 36-bit wide full key used in the cipher is derived from repeating the 18-bit key,
concatenating it to itself to get 36 bits).

This requires the input to be first split six ways, fed into the S-boxes, and then rebuilt and
run through the P-box, and then finally XORed with the key. Repeat this for every round.

Note that the individual S-boxes are relatively small (as far as number of input and output
bits): We can enumerate all possible linear expressions and test for large biases. Once we
have discovered some expressions with large biases, we can start to chain rounds together,
discovering linear expressions that operate between multiple rounds. Obviously, the more
rounds we have to “stitch” together in this manner, the lower the bias is going to be, and
therefore the tougher our job is going to be.

Since more rounds generally lower the overall bias, it makes no sense (from the point
of view of the communicating parties) to use a 1-round variant of the cipher. Even without
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linear cryptanalysis, we can use the known S-box and P-box values and simply rewrite the
known-plaintext problem to be a simple XOR equation. We can do this because the plaintext
can be processed up until the key XOR, and the ciphertext is merely the result of this XOR,
giving us a trivially solvable equation (XORing the processed plaintext, and the ciphertext
will then reveal the key). For this reason, we’ll need to analyze at least a 2-round variant.

But first thing’s first: the bias table. Since this is a 64× 64 table, I can’t show all of it.
Instead, Table 6-3 shows a small portion of the linear expression values.

Table 6-3 A Small Part of the Complete 64× 64 Linear Expression Bias Table for
the Easy1 S-Box

0 1 2 3 4 5 6 7 8 9 a b c d

0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −4 −2 6 −6 2 −4 −8 4 −4 6 −6 −6 −2
2 0 2 2 4 4 2 −2 4 2 0 4 2 −6 4
3 0 6 0 −6 2 0 −2 0 2 0 −2 0 −4 2
4 0 4 −2 −2 0 4 −2 6 0 4 2 −6 8 −4
5 0 0 4 −4 6 −6 6 2 −4 0 0 −c −2 6
6 0 2 0 −2 0 −2 8 2 2 0 −2 0 6 0
7 0 −2 6 4 2 0 −4 2 2 0 −8 −2 4 2
8 0 −2 6 0 2 0 0 2 −4 2 2 4 2 0
9 0 2 0 2 −4 2 0 6 0 6 4 −6 −4 −2
a 0 4 0 0 2 2 2 −2 2 2 −6 6 −4 0
b 0 0 −6 2 0 0 6 6 2 −6 0 0 −2 −2
c 0 −2 0 6 2 8 −6 8 4 −6 −8 −2 −6 0
d 0 2 2 0 −8 −2 6 0 0 −2 2 4 0 a
e 0 0 2 −6 −2 2 0 4 2 −2 8 4 0 −8
f 0 4 4 −4 0 4 8 0 2 6 −2 −2 −2 −6

...

· · ·

Normally, we simply pick the entries with the highest bias out of the full bias table, as
shown in Table 6-4, because of the unwieldy nature of the full table.

Let’s consider a simple example of using the piling-up lemma on the Easy1 cipher.
Although not shown in the Table 6-4 diagram, one of the equations is X0 = Y4, which

has a bias of −4. If you look at the diagram of the Easy1 cipher in Figure 6-3, there is one
fairly easy pattern to follow using this bias: in the second from the right S-box (second least
significant), we have bit 4 of the S-box’s output being mapped to bit 0 of the same S-box’s
input for the next round.

Using the piling-up lemma, we can make the following deductions.
Take ε1 = −4/32 ≈ −0.125, which is the bias for the S-box expression X0 ⊕ Y4 = 0. The

same bias will apply for the next round’s bias (ε2).
Since Y4 is mapped to X0 in the next round, let’s differentiate the rounds with superscripts.

Thus, the first round’s equation is X0
0 ⊕ Y0

4 = 0, whereas the second round’s equation is
X1

0 ⊕Y1
4 = 0.

We can then combine the two equations, knowing that Y0
4 = X1

0 , by XORing the two
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Table 6-4 The Linear Expressions of Easy1’s S-Box That Have the Highest Bias

Expression Bias

X0 = Y1 ⊕Y2 ⊕Y3 ⊕Y4 −12
X0 ⊕ X1 ⊕ X2 = Y0 ⊕Y4 ⊕Y5 12

X0 ⊕ X1 ⊕ X2 ⊕ X3 ⊕ X4 ⊕ X5 = Y0 ⊕Y3 ⊕Y4 ⊕Y5 −12
X0 ⊕ X1 ⊕ X2 ⊕ X3 ⊕ X5 = Y0 −12

X0 ⊕ X1 ⊕ X2 ⊕ X4 = Y4 −12
X0 ⊕ X1 ⊕ X2 ⊕ X5 = Y1 ⊕Y2 ⊕Y4 ⊕Y5 −12
X0 ⊕ X1 ⊕ X4 ⊕ X5 = Y2 ⊕Y4 −12

X0 ⊕ X1 ⊕ X5 = Y0 ⊕Y1 ⊕Y3 ⊕Y4 −12
X0 ⊕ X2 = Y0 ⊕Y1 ⊕Y3 −12

X0 ⊕ X2 ⊕ X3 = Y1 ⊕Y3 ⊕Y4 ⊕Y5 12
X0 ⊕ X2 ⊕ X3 ⊕ X4 = Y0 ⊕Y2 ⊕Y5 12

X0 ⊕ X2 ⊕ X3 ⊕ X4 ⊕ X5 = Y0 ⊕Y1 ⊕Y5 12
X0 ⊕ X3 ⊕ X5 = Y1 ⊕Y3 ⊕Y4 −12

X0 ⊕ X5 = Y4 ⊕Y5 −12
X1 ⊕ X2 ⊕ X3 = Y0 ⊕Y1 ⊕Y2 ⊕Y3 ⊕Y5 12
X1 ⊕ X3 ⊕ X4 = Y1 ⊕Y2 ⊕Y3 12

X2 ⊕ X5 = Y1 ⊕Y3 ⊕Y4 −12
X3 = Y0 ⊕Y4 ⊕Y5 −12

X0 ⊕ X1 ⊕ X2 ⊕ X3 ⊕ X4 = Y3 14
X3 = Y0 ⊕Y1 ⊕Y2 ⊕Y4 ⊕Y5 16

equations together (where the common terms XOR and cancel each other out), obtaining

X0
0 ⊕Y1

4 = 0

The bias for this is obtained using the piling-up lemma. We know that ε1 = ε2 = −4/32, thus
the combined bias (say, ε1,2) is obtained from

ε1,2 = 2−(2−1)
(−4

32
× −4

32

)
=

1
128

= 2−7

Figure 6-3 shows a representation of this expression.
Matsui claims that, in theory, to get a decent guess at the key bits, we will need to have on

the order of 8ε−2 plaintext–ciphertext pairs. In the case above, with a bias of 2−7, we would
need about 8(2−7)−2 = 217 = 131,072 plaintext–ciphertext pairs. This large number of pairs
shows us that this expression is not very good — since there are only 218 keys possible, we
are doing almost the same amount of work as brute force. Furthermore, this is only for a
two-round variant of the cipher: More likely, we will have more rounds, and therefore the
bias for our expression will keep getting worse.

6.6 Linear Expressions and Key Recovery

The previous attack is only for a two-round variant of the cipher and does not go into how
the key is derived from a linear expression. Let’s try building a slightly more complicated
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S-box S-box S-box S-box S-box S-box

S-box S-box S-box S-box S-box S-box

Figure 6-3 A simple linear expression for two rounds of Easy1 (ignore the influ-
ence of the key bits at this point).

linear expression to represent a slightly larger cipher. We are going to use the two linear
expressions in Table 6-5 to attack a three-round Easy1 cipher.

Table 6-5 Two Linear Expressions Used to Perform Linear Cryptanalysis on the
Easy1 Cipher

Expression Bias

X0 ⊕ X1 ⊕ X2 ⊕ X3 ⊕ X4 = Y3 14
X5 = Y1 ⊕Y2 10

We simply chain together the two linear expressions. The combined bias for the two of
them is therefore

ε = 21
(

14
64
× 10

64

)
=

35
512
≈ 0.0684

We can then calculate the approximate number of pairs required:

8ε−2 = 8× 5122

352 ≈ 1,712

Comparing this with the previous required number of plaintext–ciphertext pairs (131,072),
we can see the value of having linear expressions with higher biases.
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Up until this point, we haven’t really seen how the bits of the key fit into this analysis.
Now I’ll show how to use the expressions to find the key bits.

The first question one might ask is, how do key bits affect these linear expressions for a
cipher? In short, they don’t. This is the beauty of the linear cryptanalytic method. For exam-
ple, if we have a simple cryptographic function that operates on a plaintext (P) to produce
a ciphertext (C), then we can use two keys (K1 and K2), as well as an S-box function (S), to
obtain

C = K2 ⊕ S(P⊕ K1)

Assume that we have a linear expression for the S-box, say, X0 = Y1 ⊕ Y3. It turns out that
this linear expression will be true for the entire cryptographic function as well with the same
bias as the original expression (or it will be false with the same bias, if the key bits all XOR
to 1 instead of 0). To show this, we rewrite the above equation as

X0 ⊕Y1 ⊕Y3 = 0

We can then XOR in the appropriate key bits that the linear expression “runs through,”
obtaining something along the lines of

K1,0 ⊕ X0 = Y1 ⊕Y3 ⊕ K2,1 ⊕ K2,3

or, rewriting it:
X0 ⊕Y1 ⊕Y3 = K1,0 ⊕ K2,1 ⊕ K2,3

The only thing changed is the right-hand side; instead of a 0, we have some key bits. Fur-
thermore, the key bits aren’t going to change (since we are doing a known-plaintext attack
against a single key); they are always going to XOR to a 0 or a 1. In the case of a 1, the sign
of the bias just flip flops; and won’t change much in the expression.

The basic linear cryptanalytic method is to use a linear expression for only as much of
the encryption algorithm as is necessary. We chain together the linear expressions for the
individual S-boxes into rounds, and the rounds together to the point that we need.

The critical part comes when we run into key bits. As shown above, we will acquire key
bits on the right-hand side of the equation, but since those bits don’t change, we ignore them.
However, one of the times that we do run into key bits, we will, instead of simply tacking
them onto the end of our ever-growing linear expression, stop right there and brute-force
the relevant key bits. Depending on where we stop, we will have a different number of key
bits that will affect the linear expression. Essentially, whichever key bits give us the largest
measured bias for a large number of plaintext–ciphertext pairs will be the key bits that, most
likely, are correct.

This is best illustrated with a simple example, as shown in Figure 6-4. For the three-round
variant, we brute-force six of the bits that affect the output of the third round, and we figure
out which key gives us the correct bias. For each subkey (representing the values of the
desired key bits concatenated), in the order of 0 to 63, we can construct a list of how many
plaintext–ciphertext pairs matched the above linear expression:
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Plaintext

S-box S-box S-box S-box S-box S-box

⊕ Key

S-box S-box S-box S-box S-box S-box

⊕ Key

S-box S-box S-box S-box S-box S-box

⊕ Key

Ciphertext

Figure 6-4 Linear cryptanalysis of a three-round variant of Easy1.
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39 28 18 3 1 4 4 30
23 121 9 27 33 46 11 8
1 16 17 21 12 36 30 4

10 27 1 12 4 15 2 23
20 13 12 2 18 32 24 10
10 39 28 27 23 9 5 29
9 26 22 11 22 27 67 33

32 1 12 7 0 13 5 32

This table actually gives the difference of each count from half of the total number of plain-
texts (equivalent to the bias). In this test case, we had 1,800 plaintext–ciphertext pairs (slightly
more than required). The one with the highest bias (usually fairly close to the expected value)
is normally the key. The difference for entry number 9 above, which is the highest value, is
121/1800 ≈ 0.0672. This is fairly close to the expected value of approximately 0.0684.

6.7 Linear Cryptanalysis of DES

Performing linear cryptanalysis on the Easy1 cipher is pretty straightforward: Simply trace
the bits forward. The analysis is not quite as easy when integrating more complicated struc-
tures, such as Feistel structures.

No Feistel structure will be quite the same, but we can adapt the same technique as
before to trace our way through the cipher. I’ll show how this is done for DES, as outlined
in Reference [4]. Note that for this, and other techniques working with DES, we ignore the
initial and final permutations, as they do nothing to thwart cryptanalysis of the algorithm.

First, note that the following linear expression holds for the round function of DES (with
input X, round key K, and round function value F):

X15 ⊕ F7 ⊕ F18 ⊕ F24 ⊕ F29 = K22

This equation is true with a probability of 12/64 = 0.1875 (bias −0.3125).
When we are doing analysis on larger ciphers (such as the 64-bit DES), it is necessary to

introduce a more compact way of specifying the bits to be used. Instead of writing F7⊕ F18⊕
F24 ⊕ F29, we would rather use brackets to denote which bits we are extracting and XORing,
so that instead we could write F[7,18,24,29]. This lets us write the previous equation as

X[15] ⊕ F[7,18,24,29] = K[22]

Now that we have a round function equation, we can extend this into an equation for the
entire round, by XORing it with the appropriate bits in the other half in the round.

For example, in the first round of DES, we have L1 = R0 and R1 = L0 ⊕ f (R0, K1).
Obviously, there isn’t much to do for L1, since it is just a copy of R0, but by using the linear
equation above, we can get a linear equation for the entire round. Denote the output of the
round function for the first round as F2 (and the other rounds will, naturally, be F2, etc.),
with the corresponding keys K1, and so on, as well. Therefore, we have the following linear
expression:

L0 [15] ⊕ F1 [7,18,24,29] ⊕ R1 [7,17,24,29] = K1 [22]
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This equation holds because the input to the function is the plaintext (L0) and the linear
expression output of the function must match up with the appropriate portion of the round
values.

We can do a very similar calculation to obtain a linear expression for the third round. It
turns out that, since we are using the same equation to derive it, the R1 portion drops out,
leaving us with known values and the key bits on the right-hand side. If we were analyzing
a three-round variant of DES, we would then use Matsui’s Algorithm 1 to start deriving
information about the key bits at this point (which I omit since it will not add much to our
discussion).

However, we are more concerned with breaking the full cipher. In essence, we simply
obtain an expression for the cipher, being one round short of the full cipher (as done above
with Easy1). We engineer it so that the final round of calculation depends on only a subset
of all of the bits involved in the final round key.

Matsui gives us the following 15-round linear expression to attack the full 16 rounds of
DES:

L0 [7,18,24] ⊕ R0 [12,16] ⊕ L16 [15] ⊕ R16 [7,18,24,29] ⊕ F16,[15] = K[... ]

Here, we omit all of the key bits on the right-hand side for Matsui’s Algorithm 2 (since we
don’t use them to derive any key information). Also, note that F16 depends on the 48-bit
subkey K16. However, only 6 bits of the subkey are used to calculate bit 15, so we can brute-
force those bits.

We do get one advantage (among the increased complexity) in attacking a Feistel struc-
ture: There is very little difference between using the above 15-round approximation and
deriving six key bits on the last round and doing a very similar calculation for a 15-round
approximation, but working backwards, and using the approximation for the last 15 rounds
rather than the first. This way, we can also, independently, brute-force the bits of K1, and we
double our key bits.

Matsui claims that this method allows us to derive 14 key bits of a 56-bit DES key, by
using 247 known plaintexts [4]. Note that this isn’t an awfully big improvement over brute-
force guessing of the entire key; we still have to brute force a 6-bit key (twice); our running
time would be on the order of 254.

After the calculation of the 14 key bits is done, it’s not relatively time-consuming to take
one of the plaintexts and brute-force the other 42 key bits until the correct ciphertext comes
out. This technique is definitely better than the normal time of 256 required to brute-force the
DES key.

Matsui later came to improve even further on this method [3]. By backing off a little and
using a 14-round linear approximation, it is possible to require even fewer known plaintexts
with even more accuracy than before. Using his improved method, DES is breakable with an
85 percent success rate using 243 known plaintexts and a running time of about 243.

6.8 Multiple Linear Approximations

There are two ways we can easily see to make linear cryptanalysis more effective at this point:
collecting more plaintext–ciphertext pairs and using more linear expressions with the same
plaintext–ciphertext pairs. The technique of multiple linear approximations focuses on this
second technique, introduced in Reference [2].
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This concept can be used with Matsui’s Algorithm 1 or Algorithm 2, using the idea that
rather than requiring more plaintext–ciphertext pairs, we should attempt to use several linear
approximations at each step. This, in turn, makes the linear expressions have a lower variance,
which can either make the results more accurate or allow us to use fewer plaintext–ciphertext
pairs with the same accuracy.

In normal linear cryptanalysis, we are looking at equations of the form

P0 ⊕ P2 ⊕ · · · ⊕ C1 ⊕ C2 ⊕ · · · = K1 ⊕ K3 ⊕ · · ·

We will then collect many plaintext–ciphertext pairs, and attempt to brute-force keys as was
done previously: by taking each potential key and calculating the left-hand side of the equa-
tion’s value.

Our first instinct in using multiple linear approximations might tell us to just perform
this whole process again, with an entirely new linear approximation for the cipher. However,
it is better to try to obtain a linear approximation that has the same right-hand side as the other
approximation, that is, intersects exactly the same key bits. If both linear expressions are
affected by the exact same key bits, then the two linear approximations will match up better
and can be “combined.”

When combining two linear approximations, we use a weighted sum to add together
the counts acquired from the plaintext–ciphertext pairs. If the two linear expressions have
different right-hand sides, then we might inadvertently have our overall biases reversed (since
one’s right-hand side might evaluate to be 0 and the other to be 1), which would make them
not line up properly.

The weights multiplied against each count are simply the ratio of the bias of the expres-
sion to the sum of the biases for all of the expressions being measured, that is,

T =
m

∑
i=0

Ti ×
(

εi

∑m
j=0 εj

)

This gives the total count (T) for each individual count (Ti) multiplied by its weight.
Multiple linear approximations make a lot of sense in one way: The bulk of our work

is in looping through every single key and every single plaintext–ciphertext pair. We only
have one line that actually computes the linear expression’s value, and it is not the most
computationally intensive portion. It would be very easy to tack on another computation right
there, and not even come close to doubling the time requirement of running the algorithm.

Overall, multiple linear expressions don’t save us much time. They do, however, increase
the effectiveness of using the same number of plaintext–ciphertext pairs by increasing the
success rate of using them, and lowering the false-positive rate. The primary difficulty in
using this method is, of course, coming up with several good linear expressions involving the
same key bits.

6.9 Finding Linear Expressions

Throughout this chapter, I have glossed over finding good linear expressions. It should come
as no surprise that finding good linear expressions with high biases is a fairly difficult task,
even more so to find the “best” such expression.

Matsui developed an algorithm to perform these searches [3].
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Matsui Linear Expression Search. Here, we are looking for the best linear expression, B, us-
ing induction, building from one good guess and working our way up to the best expression
for a given cipher. We must assume that we already have a pretty good expression (perhaps
developed by hand), which I write as B̂. The “closer” to B that B̂ is, the more efficient the
search. The search is split into rounds, with each one giving a linear expression for one more
round of the cipher (until all n rounds).

Round 1:

1. For each possible set of output bits in the first round, which Matsui calls a mask, set
O1 to be the mask, and do the following:

(a) Set p′1 to be the maximum probability for any linear expression that outputs O1.

(b) If the best expression starting with p′1 is less than the probability of B̂, then we
skip back to Step 1 (and try the next value of O1). This is because there is no way,
using p′1, to obtain an expression better than B̂.

(c) Go to Round 2.

2. If no key was found, return B̂.

Round 2:

1. For each possible value of the input bit mask (I2) and output bit mask (O2):

(a) Let p′2 be the probability of the input bits leading to the output bits (i.e., the
probability of the linear expression I2 ⊕O2 = 0).

(b) If the expression starting with p′1 and p′2 can’t do better than B̂, try the next value
for I2 and O2.

(c) Otherwise, go to Round 3.

2. If none of the input and output masks work, return to Round 1.

Rounds 3, 4, . . . , (n− 1):

1. Let the round number be i.

2. For each possible value of the input bits, Ii:

(a) Set Oi = Oi−2 ⊕ Ii−1 (because of the Feistel structure).

(b) Set p′i to be the probability for the linear expression of Ii yielding Oi.

(c) If the linear expression involving p′1, p′2, . . . , p′i is not better than B̂, then try the
next value of Ii.

(d) Otherwise, call the next round (i + 1).

3. Return to the previous round.

Round n:

1. Set On = On−2 ⊕ In−1.

2. Set p′n to be the maximum probability possible for any input giving On.
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3. If the expression using p′1, p′2, . . . , p′n is better than B̂, then set B̂ to be this new expres-
sion.

4. Return to the previous round.

Although Matsui’s algorithm works pretty well for finding linear expressions of DES, it
has two deficiencies:

1. Several expressions explored will be equivalent to other expressions already searched,
because of symmetry in the cipher.

2. Several expressions explored are not truly valid candidates.

To combat these differences, Ohta et al. [6] invented another search algorithm aiming
to eliminate these problems. Their algorithm is mostly successful in doing this; however, it
comes at the cost of increased complexity and sometimes can require more computing time
(such as for DES keys). For more information on their method and analysis of Matsui’s
method, see Reference [6].

6.10 Linear Cryptanalysis Code

The following pieces of Python code can be used to implement linear cryptanalysis. They are
currently tuned to break the Easy1 cipher, although they can be easily adapted to any other
ciphers.

All of the code in this chapter relies on the Python code for Easy1 to be already loaded
beforehand (from Chapter 4), that is, the encryption and decryption functions.

First, I define a few extra helper functions in Listing 6-1. They are used to help us process
the ciphertext to an appropriate level so that we can calculate a linear expression. There are
three functions defined: calculating an inverse (or reverse) S-box given the original definition
of the S-box, calculating the reverse P-box given the original definition of the P-box, and a
function to obtain the value of a given bit from a number.
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# Calculate the reverse S-Box

s2 = [0] * len(s)

for i in range(0, len(s)):

s2[s[i]] = i

def asbox(x):

return s2[x]

# reverse P-box

def apbox(x):

y = 0

for i in range(len(p)):

if (x & (1 << p[i])) != 0:

y = y ^ (1 << i)

return y

# Extract a bit from the argument

def grab(x, pos):

return (x >> (pos)) & 1

Listing 6-1 A few helper functions for performing linear cryptanalysis on the
Easy1 cipher. We assume that the S-box and P-box functions are already set up,
as specified in Chapter 4.

Next, we need code to generate the known plaintext–ciphertext pairs that that we will use
to evaluate the linear expressions. Listing 6-2 generates the known plaintext–ciphertext pairs
for the Easy1 cipher. First, it defines the simple encryption function using the key (in binary,
0100 1001 0010 0100 1001 0010 0100 1001 0010). It then generates 1,800 random
plaintexts and stores them, along with the resultant ciphertexts (after encrypting with the
three rounds of the Easy1 cipher).

Finally, we get to the Python code for doing the actual cryptanalysis in Listing 6-3. In this
code, we set all of the counts to zero, and then, for each possible subkey, take every plaintext–
ciphertext pair and see if the linear expression is true, and if so, increment the count of the
key.

To calculate the linear expression, we first have to process the ciphertext. First, we undo
the last permutation. Then, we XOR in the current subkey guess. Finally, we run the process
backwards through the last layer of S-boxes. We now have all of the bits necessary to calculate
the linear cryptanalysis expression. Throughout the process, we keep track of the best key
(with the highest or lowest count).
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import random

# Set the number of known plaintext--ciphertext pairs

# 1800 is sufficient for our simple expression

numplaintexts = 1800

# Here we set a simple key

key = mux([0x12, 0x12, 0x12, 0x12, 0x12, 0x12])

# The encryption function, with no key schedule

def encrypt(p, rounds):

x = p

for i in range(rounds):

x = round(x, key)

return x

# Use a fixed seed, so that we get reproducibility

random.seed(12345)

# Create lists for the plaintext and ciphertext

plaintext = []

ciphertext = []

# Generate the texts

for i in range(0, numplaintexts):

# Generate a random plaintext

r = random.randint(0, 2**36)

plaintext.append(r)

# Also store the corresponding ciphertext

c = encrypt(r, 3)

ciphertext.append(c)

Listing 6-2 Python code for generating known plaintext–ciphertext pairs for use
in Easy1 linear cryptanalysis.
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# Best deviation so far

maxdev = -1

# Best deviation’s index

maxk = -1

# Which S-box we are working with

koffset = 6

# Initialize all of the counts to zero

count = [0] * ssize

# Brute force the subkeys

for k1 in range(ssize):

# Calculate target partial subkey

k = k1 << koffset

# For each plaintext-ciphertext pair

for j in range(0,len(plaintext)):

# Get the pair

pt = plaintext[j]

ct = ciphertext[j]

# Undo the last mixing layer with

# target partial subkey

v = apbox(ct)

v = demux(v)

v = mix(v, k)

# Go backwards through last S-box

u = mux([asbox(v[0]),

asbox(v[1]),

asbox(v[2]),

asbox(v[3]),

asbox(v[4]),

asbox(v[5])])

# If the linear expression holds, increment

# the appropriate count

if grab(pt, 6) ^ grab(pt, 7) ^ grab(pt, 8) ^ \

grab(pt, 9) ^ grab(pt, 10) ^ grab(u, 8) ^ \

grab(u, 9) == 0:

count[k1] = count[k1] + 1

# If this was the best so far, then mark it

if abs(count[k1] - len(plaintext) / 2) >= maxdev:

maxdev = abs(count[k1] - len(plaintext)/2)

maxk = k

# Uncomment the following line if you want to see your progress

# print(k1, count[k1])

Listing 6-3 Python code for performing linear cryptanalysis on the Easy1 cipher.
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Just so that we have a nice, easy-to-read display of what happened in the linear crypt-
analysis, we can print out the following summary, showing us the relevant candidate keys, as
well as the proper keys. Simply add the code in Listing 6-4 to the end of the above algorithm.
In the code, we use the built-in bin function to convert a number to binary. We then print out
the key derived from the linear cryptanalysis code, and also show the actual relevant subkey.

print("guess:",

bin(maxk >> koffset))[2:].rjust(6, ’0’),

maxk >> koffset,

" deviation: ",

maxdev / float(len(plaintext)))

print("real: ",

(bin((apbox(key) >> koffset) & 0x3f))[2:].rjust(6, ’0’),

(apbox(key) >> koffset) & 0x3f))

Listing 6-4 Python code for printing out the results of the previous linear crypt-
analysis of Easy1. Note that the rjust function takes the string it is applied to and
pads it up to the given length (the first argument) by inserting the pad character
(the second argument) on the left until it is the correct length.

6.11 Summary

In this chapter, we explored a powerful technique for deriving keys in many ciphers. This
technique is the first attack against DES to operate in less time than an exhaustive search. The
downside is that a large number of known plaintext–ciphertext pairs must be collected, and
that because the attack is probabilistic, it isn’t guaranteed to work for every key.

Nearly every attack we cover in the rest of the book will have a similar structure to linear
cryptanalysis: We typically generate some kind of expression for each individual crypto-
graphic element (such as an S-box) and build the expression to encompass rounds and even-
tually the entire cipher. The nature of these expressions changes depending on the attack,
although several are based on linear expressions. As such, understanding the basic linear
cryptanalytic attack is extremely helpful in comprehending the attacks of the next chapter.
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Exercises

Exercise 1. Write an S-box linear analyzer that will generate tables of linear biases. Verify
the tables presented in this book.

Exercise 2. Try using your program from the previous exercise to analyze the S-box in AES.
What are your results?

Exercise 3. Write and test your own implementation of the linear cryptanalytic method
against the Easy1 cipher.

Exercise 4. Generate a new cipher, similar to Easy1, by generating a random new array for
the S-box and P-box. Perform linear cryptanalysis on it, for three rounds.

Exercise 5. Use the same S-box and P-box from the previous exercise, only extend this cipher
to be a Feistel cipher with the S-box, P-box, and key mixing for the round function. Extend
the number of rounds to eight, and then attempt to perform a linear cryptanalytic attack.

Exercise 6. Write a program to find the best linear expression possible for your random
Feistel cipher in the previous exercise.
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CHAPTER

7
Differential Cryptanalysis

In the previous chapter, I introduced the concept of linear cryptanalysis, based on exploit-
ing linear relationships between bits in the ciphers. In this chapter, we explore the use of
differential relationships between various bits in the cipher.

Although the concept of exploiting differences is not necessarily new, the way it is ap-
proached for sophisticated ciphers, such as DES, was not well understood until fairly recently.

The standard differential cryptanalysis method is a chosen-plaintext attack (whereas lin-
ear cryptanalysis is a known-plaintext attack, thus is considered more feasible in the real
world). Differential cryptanalysis was first made public in 1990 by Eli Biham and Adi Shamir
[3]. In the years following, it has proven to be one of the most important discoveries in
cryptanalysis.

In this chapter, we explore the technique of differential cryptanalysis. I then show how
this method can be used on several different ciphers. Finally, I show some of the more
advanced techniques that have evolved from differential cryptanalysis.

7.1 Overview

Although differential cryptanalysis predates linear cryptanalysis, both attacks are structured
in a similar fashion — a simple model of individual cipher components and a predictive
model of the entire cipher. Instead of analyzing linear relationships between input and out-
put bits of S-boxes, as in linear cryptanalysis, differential cryptanalysis focuses on finding a
relationship between the changes that occur in the output bits as a result of changing some
of the input bits.

Like linear cryptanalysis, differential cryptanalysis is a probabilistic attack: In this case,
we will be measuring how changes in the plaintext affect the output, but since we do not
know the key, the measurements will be random, but guided, in nature. How close the
measurements are to what we desire will tell us information about the key.

7.2 Notation

First, a few definitions and conventions. There are a few conventions used in cryptanalysis
literature, and I’ll use these as much as possible, but the notation used can sometimes sacrifice
conciseness for clarity.
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The fundamental concept here is that of measured differences in values. We use the term
differential to mean the XOR difference between two particular values, that is, the XOR of
the two values. Differentials are often denoted as Ω values, such as ΩA and ΩB.

A characteristic is composed of two differentials, say ΩA and ΩB, written as

(ΩA ⇒ ΩB)

The idea is that a characteristic is showing that the differential, ΩA, in an input gives rise to
another differential, ΩB, in an output. Most of the time, this characteristic is not a certainty; it
will be true only some of the time. Hence, we are often concerned with the probability that
a differential ΩA in the input will result in a differential ΩB in the output.

As a quick example, assume we are using a simple XOR cipher that encrypts data by
XORing each byte with an 8-bit key (which is the same throughout). Hence, a message
representing the text “hello” in hexadecimal ASCII would be

68 65 6c 6c 6f

If we XORed this with the constant hex key 47, we would get

2f 22 2b 2b 28

We can try to use a differential of, say, ff (all ones) in the original plaintext, and then
XOR again with the key to obtain a new ciphertext:

d0 dd d4 d4 d7

Finally, we compare the two ciphertexts by XORing them, obtaining the differential:

ff ff ff ff ff

Note that this is the exact differential we used on the plaintext! This should give us a clue
that the cipher is not very strong. We can then write the characteristic for this as

(ffffffffff⇒ ffffffffff)

We consider input and output here to refer to either the input and output of a S-box,
some number of rounds of a cipher, or the total cipher itself. Most importantly, we will take
characteristics of an S-box to create characteristics for various rounds, which are then stitched
together to create a characteristic for the entire cipher — this is how a standard differential
attack is realized.

7.3 S-Box Differentials

Now we are ready to start analyzing the components of a cipher. Since most ciphers utilize
S-boxes (or something analogous, such as the SubBytes operation in AES) at their heart, it
is natural to start there. Thus, the first step of differential cryptanalysis is to compute the
characteristics of inputs and the outputs of the S-boxes, which we will then stitch together to
form a characteristic for the complete cipher.

For the following, assume that we have an S-box whose input is X and output is Y. If we
have two particular inputs, X1 and X2, let

ΩX = X1 ⊕ X2



Chapter 7 Differential Cryptanalysis 172

Here, ΩX is the differential for the two plaintexts. Similarly, for the two corresponding
outputs of the above plaintexts, Y1 and Y2, respectively, let

ΩY = Y1 ⊕Y2

To construct the differential relation, we consider all possible values of ΩX, and we want
to measure how this affects ΩY. So, for each possible value of X1 and ΩX (and, therefore,
X2), we measure Y1 and Y2 to obtain ΩY and record this value in a table. Table 7-1 shows
some the results of performing this analysis on the Easy1 cipher, with each entry being the
number of times ΩX gave rise to ΩY. (The entry in Table 7-1 corresponding to 0 ⇒ 0 is the
hexadecimal value 40, meaning that it is always true. This is because no difference in the
input will always, of course, give no difference in the output.)

Table 7-1 Top-Left Portion of the Easy1 Table of Characteristic Probabilities

ΩX

0 1 2 3 4 5 6 7 8 9 a b c d e f

ΩY

0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2
2 0 0 0 0 0 2 0 0 0 0 0 0 2 2 2 0
3 0 0 2 0 0 2 2 0 2 0 0 0 0 2 4 0
4 0 2 0 2 2 0 0 0 2 2 2 0 2 2 0 0
5 0 0 0 0 0 2 0 0 4 0 0 0 0 0 0 0
6 0 0 0 2 2 0 6 0 2 2 0 2 2 0 2 2
7 0 0 0 2 0 4 0 0 0 4 2 0 0 0 2 0
8 0 4 2 0 0 0 4 2 2 0 2 2 2 2 0 2
9 0 2 0 0 0 2 0 2 0 0 0 0 0 0 0 4
a 0 0 0 0 0 0 2 2 0 2 0 2 0 4 0 2
b 0 2 0 2 0 0 0 0 0 0 8 2 0 0 0 4
c 0 2 2 0 0 2 0 0 0 0 2 2 2 0 2 2
d 0 2 0 2 0 0 0 2 0 2 0 0 2 0 2 2
e 0 2 2 0 2 0 0 2 0 2 0 0 0 0 0 2
f 0 0 2 2 2 0 0 0 0 0 0 0 0 0 0 2

Note that this is only a sample of the complete table.

However, more often it is useful to collect characteristics with the highest probabilities
in a list format. By searching through the complete table of the differential analysis of the
Easy1 cipher’s S-box, we would note that the two largest entries are 6 and 8, representing
probabilities of 6/64 and 8/64, respectively. Tables 7-2 and 7-3 give listings of all of the
characteristics with these probabilities.

In general, entries with fewer bits set in the ΩX and ΩY that have higher occurrence
counts are desirable.

However, there is the issue of round keys. Specifically, in Easy1, as well as many other
ciphers, there is a layer of key mixing after the input bits are used in the S-box. In linear
cryptanalysis, these were kept track of and taken care of at the end of the linear expression.
However, in differential cryptanalysis, we are not accumulating a massive linear expression;
therefore, we need to address the key influence.
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Table 7-2 S-Box Characteristics of Easy1 with a Probability of 6/64

(000110⇒ 000110) (000110⇒ 100001)
(000110⇒ 110000) (000111⇒ 101001)
(001001⇒ 011000) (001001⇒ 100010)
(001001⇒ 110010) (001010⇒ 110111)
(001100⇒ 101110) (001101⇒ 010100)
(001110⇒ 110001) (010001⇒ 010100)
(010010⇒ 000001) (010011⇒ 001000)
(011011⇒ 100101) (011100⇒ 001100)
(011100⇒ 111111) (011101⇒ 111001)
(011110⇒ 010101) (011111⇒ 100110)
(100000⇒ 100111) (100010⇒ 001101)
(100011⇒ 000110) (100101⇒ 000001)
(101000⇒ 001100) (101011⇒ 001100)
(101011⇒ 111100) (101100⇒ 101011)
(101101⇒ 000011) (110010⇒ 101101)
(110011⇒ 011111) (110011⇒ 101111)
(111000⇒ 100000) (111001⇒ 001001)
(111001⇒ 001101) (111011⇒ 010100)
(111011⇒ 111110) (111100⇒ 011100)
(111100⇒ 100000) (111101⇒ 000100)

Table 7-3 S-Box Characteristics of Easy1 with a Probability of 8/64

(001011⇒ 001010)
(010000⇒ 011001)
(011001⇒ 010110)
(110101⇒ 101001)

In our Easy1 cipher, denote W to be the corresponding input into the S-box after the key
has been mixed in, or W = X⊕K, and let Y be the output of the S-box. We will naturally now
rework our above analysis to be on ΩW instead of ΩX. Then, we have inputs to the S-box,
W1 and W2, with ΩW = W1⊕W2. We substitute in the appropriate values in this equation, to
obtain

ΩW = W1 ⊕W2 = (X1 ⊕ K)⊕ (X2 ⊕ K) = X1 ⊕ X2 = ΩX

Therefore, having the key bits mixed in does not affect our analysis at all and can be safely
ignored in this cipher. Normally, this is the case with most ciphers. (However, there are
some ciphers that provide more trouble, such as Blowfish, where the S-boxes themselves are
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determined by the key.)

7.4 Combining S-Box Characteristics

Note that characteristics are not estimates, as the expressions in linear cryptanalysis are, but
actual occurrences in the S-boxes themselves that have known probabilities. Hence, we do not
need the Piling-up Lemma to combine S-box equations but can merely chain them together,
multiplying the probabilities directly using normal rules of probability.

We have a graphical representation of this process of combining S-box characteristics in
Figure 7-1. In this diagram, we are using two different relationships (in binary):

(001001⇒ 011000)

(010010⇒ 000001)

Both of these characteristics have a probability of 6/64. The first round uses the first charac-
teristic, which has only two output bits affected by the two input bits. These output bits then
feed into the second S-box of the second round after permutation.

Each charactistic is expected to be independent of the others, thus we can multiply the
probability of each to obtain a probability for each occurring at the same time:

6
64
× 6

64
≈ 0.008789

Note that other S-boxes have no input difference and, therefore, no output difference.
We now have built a characteristic for the entire three-round cipher, starting with two

input bits and affecting one intermediate output bit some of the time. We can use this model
to derive six of the 18 key bits by selecting a set of plaintext pairs, with their difference
being the input differential used to develop the model. Measuring the resulting change in
the ciphertext pairs will enable us to find a portion of the key. When the ciphertext pairs
yield the expected differential, they form what is called a right pair of plaintext–ciphertexts.
(Obviously, plaintext–ciphertext pairs that do not exhibit the desired differentials are called
wrong pairs.)

An important addition to the idea of building up characteristics is the idea of an iterative
characteristic — one whose input differential is the same as its output differential at some
point. These are particularly useful because they can be chained together very easily to create
the larger characteristics required for analyzing ciphers with many rounds. I’ll show some
examples of these when we explore the differential cryptanalysis of DES in Section 7.7.2,
although it can apply to any kind of cipher.

7.5 Key Derivation

Just as in linear cryptanalysis, we desire to have some number of plaintext–ciphertext pairs
to determine the key. However, because differential cryptanalysis is a chosen-plaintext tech-
nique, we need to be able to pick certain plaintexts to make the technique work.

Specifically, we pick plaintexts in pairs with differences that are necessary for the charac-
teristic we are testing. In our Easy1 cipher, this difference is ΩP = 02 80 00 00 00 (bits
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Plaintext

S-box S-box S-box S-box S-box S-box

⊕ Key

S-box S-box S-box S-box S-box S-box

⊕ Key

S-box S-box S-box S-box S-box S-box

⊕ Key

Ciphertext

Figure 7-1 Differential attack on the Easy1 cipher.
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30 and 32). We obtain the ciphertexts for both plaintexts and measure the difference in the
output. However, in this case, we did not construct the differential characteristic equation to
relate the plaintext and the ciphertext: We relate the plaintext to the inputs to the last set of
S-boxes. We then brute-force the relevant bits of the key, mix the key bits with the ciphertext,
reverse the mixed bits through the S-boxes, and then attempt to perform a match on the out-
put differential. We increment a counter for each key whenever any plaintext/ciphertext pair
matches our expected differential.

In general, we expect the correct key to exhibit the probability that we found during
analysis. When running the analysis, we obtain Table 7-4 of count values in a sample run.

From Table 7-4, we can note that the largest count is 87, corresponding to the entry for
subkey 33 (100001). The key used to generate the ciphertext was 555555555, and we can
confirm that the bits of subkey 33 match up correctly with the bits of the key (by looking at
how the subkey is mapped to the real key through the permutation, as shown in Figure 7-1).

Table 7-4 Results From Differential Cryptanalysis of the Easy1 Cipher

11 28 7 11 14 25 16 10
21 21 15 13 16 16 24 9
15 8 30 19 14 17 29 13
17 33 13 12 15 21 12 13
12 87 19 16 10 19 15 17
12 7 15 23 19 21 20 18
17 11 8 5 17 9 24 21
9 12 14 15 18 6 17 13

Note how entry 33 (since we start counting at 0), whose value is 87, stands out
among the rest.

In total, this technique required approximately 26× 1000 ≈ 216 operations to work. Brute-
forcing the remaining bits will take about 212 operations, which is not as great as the 216

already done. Together, these operations take less time than brute-forcing the 18-bit key
(which would take 218 operations).

If a full 36-bit key were used, we would have 230 operations left after the key derivation
to brute-force the remaining 30 bits. The 230 operations in this case would take much longer
than the 216 operations to derive the 6 bits using differential cryptanalysis, thus the overall
key derivation would still require approximately 230 operations (less than the 236 required for
brute-forcing a 36-bit key).

7.6 Differential Cryptanalysis Code

The code for implementing differential cryptanalysis, in general, is extremely straightfor-
ward. Typically, we do the analysis part offline, where we determine which characteristics to
use.

First, we need to perform a simple differential analysis of an S-box. Assume that we have
the S-box implemented as a lookup table (in the array s). Listing 7-1 gives us the code to
do this, by taking every possible input value for the S-box, calculating the output value, and
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then measuring, for each input differential possible, the resultant output differential. A table
is kept of how many times certain differentials give rise to other differentials.
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# The number of bits in the S-box

sbits = 6

# Calculate the maximum value / differential

ssize = 2**6

# Generate the matrix of differences, starting

# at all zeros

count = []

for i in range(ssize):

count.append([0] * ssize)

# Take every possible value for the first plaintext

for x1 in range(0, ssize):

# Calculate the corresponding ciphertext

y1 = s[x1]

# Now, for each possible differential

for dx in range(0, ssize):

# Calculate the other plaintext and ciphertext

x2 = x1 ^ dx

y2 = s[x2]

# Calculate the output differential

dy = y1 ^ y2

# Increment the count of the characteristic

# in the table corresponding to the two

# differentials

count[dx][dy] = count[dx][dy] + 1

Listing 7-1 Python code for performing a differential analysis of an S-box, loaded
into the s matrix.

Next, we show how to generate large numbers of plaintexts and ciphertexts, with the
plaintexts having a known differential (see Listing 7-2). This is simply a matter of taking
a random plaintext, XORing it with the necessary difference for the differential attack to
produce another plaintext, and calculating the relevant ciphertexts to both plaintexts, and
storing them. This process is repeated as many times as necessary.

Finally, we perform the differential attack, as shown in Listing 7-3. To perform the dif-
ferential cryptanalysis, we go through each possible subkey (in this case, there are 64 such
subkeys, since it is a 6-bit value). For each of these, we process all of the pairs of ciphertexts
(by undoing the last permutation, XORing the subkey in, and going backwards through the
appropriate S-box). We then calculate the differential of these processed ciphertexts, and if
the differential corresponds to the characteristic we are concerned with, we increment the
count of the subkey.
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import random

# Use a fixed seed, so that we get reproducibility

random.seed(12345)

# Set the number of rounds in the encryption function

rounds = 3

# Set the number of bits in a plaintext or ciphertext

bits = 36

# Set the plaintext differential

pdiff = 0x280000000

# Set the number of pairs to generate

numpairs = 1000

# Store the plaintexts and ciphertexts

plaintext1 = []

plaintext2 = []

ciphertext1 = []

ciphertext2 = []

for i in range(0, numpairs):

# Create a random plaintext

r = random.randint(0, 2**bits)

# Create a paired plaintext with a fixed differential

r2 = r ^ pdiff

# Save them

plaintext1.append(r)

plaintext2.append(r2)

# Create the associated ciphertexts

# Assume that the encryption algorithm has already

# been defined

c = encrypt(r,rounds)

c2 = encrypt(r2,rounds)

ciphertext1.append(c)

ciphertext2.append(c2)

Listing 7-2 Creating chosen plaintext–ciphertext pairs with a fixed differential.
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keys = 64 # number of keys we need to analyze

count = [0 for i in range(keys)] # count for each key

maxcount = -1 # best count found so far

maxkey = -1 # key for the best differential

cdiff = 2 # the ciphertext differential we are looking for

# Brute force the subkeys

for k1 in range(0,keys):

# Adjust the key to match up with the correct S-box

k = k1 << 18

# For each p/c pair

for j in range(numpairs):

c1 = ciphertext1[j]

c2 = ciphertext2[j]

# Calculate whatever needs to be done using

# key bits, storing the results as u1 and u2

v = mix(demux(apbox(c)), k)

u = asbox(v[3])

v2 = mix(demux(apbox(c2)), k)

u2 = asbox(v2[3])

# If the differential holds, increment count

if u1 ^ u2 == cdiff: count[k1] = count[k1] + 1

# If this was the best key so far, then save it

# Otherwise, ignore it for now

if count[k1] >= maxcount:

maxcount = count[k1]

maxkey = k1

Listing 7-3 Performing differential cryptanalysis on the Easy1 cipher.
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7.7 Differential Cryptanalysis of Feistel Ciphers

The sections above introduce the basic concept of differential cryptanalysis on this fairly
simple product cipher. However, the concept extends over to Feistel ciphers, the ciphers we
are usually most concerned with, quite gracefully.

The first steps are nearly identical: We identify S-box characteristics, and we start tracing
those through the cipher. However, the exact way we trace them through the cipher differs
somewhat.

Since we have the interaction of the left and right halves, we often have a more difficult
task of choosing appropriate characteristics. We often want the differentials to mostly cancel
each other out, so that we can control the effects on the next round.

Usually, this is through the use of iterative characteristics. These iterative characteristics
will start with a differential. After several rounds through the cipher, they give the same
output differential as the input. This enables us to repeat them several times, making analysis
very easy. We will see examples of these in the next two sections.

Finally, the last part is key derivation. After the differentials have been traced all the way
to the second-to-last round, as before, we then have to ensure that this final differential only
modifies the bits of the round function that are affected by some subset of the key bits.

At this point, just as before, we take the two values of the ciphertext and run them
through the previous round function. We will be brute-forcing the appropriate key portions
of the round functions. The key value that gives us the highest number of the expected
characteristics will be our guess.

In the next sections, I’ll show how to use these ideas on FEAL and DES.

7.7.1 Differential Cryptanalysis of FEAL
In this section, we will see how the differential cryptanalysis method can be applied to the
FEAL block cipher I introduced in Section 4.7. This technique was first presented in Refer-
ence [4].

To review, FEAL has a simple DES-like Feistel structure, with an S-box that uses a combi-
nation of integer addition, the XOR operation, and bitshifting.

Note, however, that the S-boxes are slightly more complicated than they appear at first
glance. They take a 16-bit input and give an 8-bit output. To combat this, consider the middle
16 bits of the f -function, denoted by the equations

f 1 = S( f 1, f 2, 1)

f 2 = S( f 2, f 1, 0)

These can be regarded together as one S-box with a 16-bit input and 16-bit output, since
their inputs are the same. The distribution table for this “super” S-box has some very inter-
esting properties. Notably, most of the entries (98%) are 0. Furthermore, three of the entries
hold with a probability of 1, for example:

(ΩP = (L ‖ 80808080))⇒ (ΩT = (L⊕ 02000002) ‖ 80808080)

Some interesting characteristics include iterative characteristics, those in which the input
and output XOR differentials are the same. These allow us to construct longer expressions
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with less complicated analysis. For example, in FEAL, the following is a four-round iterative
characteristic that holds with probability 2−8:

(ΩP = 80608000 80608000)⇒ (ΩT = 80608000 80608000)

7.7.2 Differential Cryptanalysis of DES
At the time when differential cryptanalysis was developed, DES was in widespread use and
was often the target of many new techniques. The use of differential cryptanalysis against
DES was first presented in Reference [3], as one of the first uses of differential cryptanalysis,
and with surprising results (see Table 7-5).

Table 7-5 Differential Cryptanalysis Attack Against DES: Complexities for Differ-
ent Numbers of Rounds [3]

Rounds Complexity of Attack

4 24

6 28

8 216

9 226

10 235

11 236

12 243

13 244

14 251

15 252

16 (full DES) 258

To start off, I’ll show how to break the three-round DES, and then extrapolate the process
further.

For our plaintext differential, we will always have the right (least significant) 32 bits be all
zeros, with the left (most significant) being a particular pattern.

Recall from Chapter 4 that DES’s main round function looks as follows:

1. Ri+1 = Li ⊕ f (Ri, Ki+1).

2. Li+1 = Ri.

Expanding this out to three rounds (values in bold are known values):

1. R0 = 0.

2. L0 (arbitrary, random).

3. R1 = L0 ⊕ f (0, K1).

4. L1 = R0 = 0.

5. R2 = L1 ⊕ f (R1, K2) = f (R1, K2).
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6. L2 = R1.

7. R3 = L2 ⊕ f (R2, K3) = R1 ⊕ f (R2, K3).

8. L3 = R2 = f (R1, K2).

Now, if we have a second plaintext-ciphertext pair (say, L′0, R′0, L′3, R′3), with the new plain-
text having a known differential to the previous plaintext (Ω), then we have the following
derivation:

1. R′0 = 0 (= R0).

2. L′0 = L0 ⊕Ω (arbitrary, random).

3. R′1 = L′0 ⊕ f (0, K1) = R1 ⊕Ω.

4. L′1 = R′0 = 0.

5. R′2 = L′1 ⊕ f (R′1, K2) = f (R1 ⊕Ω, K2).

6. L′2 = R′1.

7. R′3 = L′2 ⊕ f (R′2, K3) = R′1 ⊕ f (R′2, K3).

8. L′3 = R′2 = f (R1 ⊕Ω, K2).

Here, we have underlined where the differential propagates.
From the last steps of the two previous lists, since we know the values of L3 and L′3, we

can calculate ∆, the difference in the ciphertexts. We also can perform a differential analysis
of the S-boxes of DES, so that the effect of the differential Ω would be known, and we can
choose Ω to exploit this for each S-box (since DES has several distinct S-boxes).

Once we know some good characteristics of the round function, we can then set up the
three-round cipher to use the plaintext differential on the left to create differences in the
plaintext. After measuring enough of these, we will be able to make good guesses at the key
bits.

In general, we can easily see that if the right-half XOR is 0, and the left half has an
arbitrary differential (say, L), we can construct a characteristic for a round of DES.

First, as shown above, if the input to the round function ( f ) is the same (with a zero XOR),
then the output is the same. The new left half in both cases is the old right half (which is the
same, since there is a zero XOR). The new right half is the XOR of the round function value
(which is the same) and the old left half, which has a differential of ΩL. The characteristic
can be written as

((ΩL ‖ 0)⇒ (0 ‖ ΩL))

Furthermore, there is no guessing in this, thus this characteristic has a probability of 1.

Let’s construct another good characteristic. Again, assuming a constant differential for
the left half (ΩL), if we consider the right half having the differential 60 00 00 00, then
the input to the round function will also have that same XOR. Using S-box analysis, we can
show that the output differential of the round function 00 80 82 00 occurs with probability
14/64. This differential would then be XORed with the previous differential (ΩL), to obtain
the following one-round characteristic:

((ΩL ‖ 60 00 00 00)⇒ (60 00 00 00 ‖ ΩL ⊕ (00 80 82 00)))
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Now that we have these two characteristics, we can combine them to create a fairly good
three-round characteristic. To see how this is done, simply look at the previous characteristic,
and assume that ΩL = 00 80 82 00.

In this case, we will have the following chain, using the second, first, and second charac-
teristics in that order:

(00 80 82 00 ‖ 60 00 00 00)

⇒ (60 00 00 00 ‖ 00 00 00 00)

⇒ (00 00 00 00 ‖ 60 00 00 00)

⇒ (00 80 82 00 ‖ 60 00 00 00)

This is an example of an iterative characteristic: It yields itself after several rounds. Therefore,
these can be chained together to create larger and larger characteristics.

Cryptanalysis of DES itself using this characteristic, as well as a few others, gives us an
approximation for enough of the cipher to start brute-forcing particular subkey bits.

7.8 Analysis

Now that we have seen exactly how to perform differential cryptanalysis, it’s fair that we
should attempt to analyze its operations and discuss some of its properties.

As we have shown, differential cryptanalysis has two primary features: It is a probabilistic
attack, and it is a chosen-plaintext attack. Neither of these scenarios is ideal, but we are stuck
with them.

The implications of this probabilistic attack are similar to the properties of other proba-
bilistic problems. We aren’t guaranteed to get good results, even with perfectly good inputs
and a sufficient number of chosen plaintexts. The more chosen plaintexts we do have, how-
ever, the more likely we are to succeed.

Another disadvantage of this method is that we will come up with an answer no matter
what; the answer will just be incorrect if we don’t have a sufficient number of texts to test it
against. Furthermore, there is no way to tell if the key bits derived are correct until we derive
all the rest of the key bits and actually test encrypting the plaintext with the potential key
(unless we know the answer ahead of time).

The fact that this algorithm is chosen plaintext is another step back: Chosen plaintexts
represent some of the most stringent conditions of a cryptanalytic attack. They require the
cryptanalyst to not only know and understand the cryptographic algorithm being used, have
developed a plan of action against it, and collected a large amount of ciphertext with known
plaintext values, but in addition have the ability to manipulate this plaintext! This is a fairly
tall order and is a bit less practical than a known-plaintext attack or a ciphertext-only attack.

Finally, we have the fact that to execute the attack at all, we must store a large number
of plaintext–ciphertext pairs. There are ways around this, in test scenarios at least, where we
reverse the order that we do things. We first generate a new plaintext–ciphertext pair, XOR
the plaintext to obtain the resultant ciphertext, and then try every possible subkey against
it, incrementing their respective counts, as necessary. At the end of this computation, we
can throw away the pairs and generate new ones. Thus, in some cases, we can mitigate this
storage problem.

Moreover, the time improvement over exhaustive search represent a tremendous break-
through even considering the strenuous requirements to implement the improvements.
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Although differential cryptanalysis has several drawbacks, the overall concept has had a
powerful impact on cryptanalysis. In the following sections, we examine some of the funda-
mental extensions of differential cryptanalysis.

7.9 Differential-Linear Cryptanalysis

An interesting combination of the two important algorithms presented in the last two chap-
ters, linear and differential cryptanalysis, appeared in Reference [13], courtesy of Susan
Langford and Martin Hellman.

The trick is to use a linear expression, developed in the way already shown, and to mea-
sure what changes in the plaintext do to the value of that linear expression. In this way, we
aren’t simply brute-forcing the subkey by calculating counts on the linear expression; rather,
we are using carefully selected differentials that should produce fixed, expected probabilities
of the two linear expressions being XORed being equal to 0. As before, we normally expect
this to happen roughly half the time for any arbitrary linear expression and difference, thus
any deviation from this can be used.

A good example that the authors show is using a three-round linear approximation for
DES. A normal linear expression proposed by Matsui is

L0 [7,18,24,29] ⊕ R0 [15] ⊕ R3 [7,18,24,29] ⊕ L3 [15] = 0

This holds with a probability of either approximately 0.695 or 0.305.
The differential attack comes from noting that we can toggle bits 29 or 30 (or both) of the

L1 value, and this will produce no changes in the fourth-round linear approximation. This
means, at this point, that our linear approximations XORed together have a probability of 1
of occurring.

Carrying this out to an eight-round approximation, the probability of the linear expression
XOR becomes

0.6952 + 0.3052 = 0.576

We add the numbers together since we could either be right twice in a row or wrong with
our expression twice in a row, and we can’t really tell the difference. As the authors of the
paper say, two wrongs make a right in binary arithmetic.

This means we have a bias of 0.076, giving us an approximate number of plaintext–
ciphertext pairs:

8× (0.076)−2 ≈ 1400

We can even pull another trick to reduce this number further.
Since we still have to get bits 29 and 30 to toggle in L1, we will naturally have to toggle

bits in the plaintext (L0 and R0). Toggling the same two bits in R0 will perform this.
We will also toggle bits 1, 9, 15, and 23 of L0: these are the output bits of the S-box S1

(which is also affected by 6 bits of the key). Bits 29 and 30 are also used as the input to S1
(and no other S-box in round 1); thus our changes affect only S1. This gives a total of 64
plaintexts, with their ciphertexts.

At first glance, none of these plaintext–ciphertext pairs are really “paired” in the way that
differential cryptanalysis requires. However, it turns out that there are several such pairings.
We can pair each plaintext value (there are 64) with three other plaintexts: one with bit 29 of
R0 toggled, one with bit 30 of R0 toggled, and one with both bits toggled in R0. This way,
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we have three pairs, for a theoretical total of 64× 3 = 192 pairings. In reality, we get half as
many (96), since half of the pairings are redundant.

This way, we are getting 96 pairings for 64 plaintexts (a ratio of 3-for-2), instead of the
normal 1-for-2 of standard differential cryptanalysis because in differential cryptanalysis, we
generate one plaintext, and then XOR it with a fixed value to obtain another plaintext. Thus,
we have two plaintexts and one pairing, for a ratio of 1-for-2, which is approximately three
times less efficient than combining the two techniques.

While this technique doesn’t yield more key bits than either differential or linear crypt-
analysis, it does allow us to derive these key bits with fewer plaintext–ciphertext pairs, while
still maintaining a high success rate. There are some issues with scalability, though: this
method works well for fewer numbers around and doesn’t apply well to more rounds.

7.10 Conditional Characteristics

It is difficult to apply differential cryptanalysis to certain classes of ciphers. For example,
if we have certain portions of the cipher modify the structure of the cipher itself based on
the key, then we would not be able to effectively develop iterative characteristics to use in
differential cryptanalysis. Ben-Aroya and Biham explore a particular method against two
particular ciphers thought to be strong against differential cryptanalysis using a technique
called conditional characteristics [2].

One of the ciphers they analyze is called Randomized DES (RDES). Many cryptologists
thought that a way to limit the susceptibility of DES to differential cryptanalysis was to swap
the left and right halves during some of the rounds: which rounds depended on the key value.
Since there are 16 different rounds, there would be 216 = 65,536 different combinations of
swapping and not swapping, thereby making normal differential analysis extremely difficult.

Naturally, there is one problem. For a certain number of keys (one out of every 215 of
them), there would be no swapping at all! If subjected to a known-plaintext attack, the entire
right half would not be affected by the encryption, passing through the rounds untouched.
Similarly, for another set of one out of every 215 keys, there would only be a swap on the last
round, allowing us to easily derive most of the key bits using simple analysis of the inputs
and outputs of the round function.

The rest of the keys is where the concept of a conditional characteristic comes in handy.
A conditional characteristic is a characteristic that is dependent on the key being used. Typ-
ically, the characteristic is only effective against keys with certain properties (such as certain
bits being set). The number of keys that the conditional characteristic is good for, divided by
the total number of keys, is called the key ratio.

The attack uses two different round function characteristics of DES:

(0⇒ 0)

(19 60 00 00⇒ 0)

When combined, they provide a two-round iterative characteristic:

((19 60 00 00 00 00 00 00)⇒ (00 00 00 00 19 60 00 00))

In DES, we can iterate this characteristic many times, but owing to the swapping and
non-swapping portions of RDES, we can’t use this one as is.
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We can, though, use the individual components. Essentially, we use the first characteristic
(0 ⇒ 0) on the first round and the next characteristic after the first swap. From then on, we
alternate at every swap. This will construct a characteristic for the entire cipher.

We can produce a second characteristic for the entire cipher in a very similar way, only
starting with the second round characteristic in the first round, and then using the first round
characteristic after the first swap, and alternating to fill the rest of the cipher (using a new
characteristic for each swap).

At least one of these characteristics will have a probability of (1/234)r, where r is the
number of rounds of the characteristic (or, equivalently, the number of swaps).

In this way, we will have to produce characteristics for all of the 215 possible swapping
scenarios. However, we have only two characteristics per swapping scenario, requiring us
to have only about twice as many chosen plaintext–ciphertext pairs as normal differential
cryptanalysis.

But the advantage is, if there are less than 13 swaps, then the probability will be much
greater than the normal DES probability, decreasing the cost of the attack. At 13 swaps, the
complexity of the attack is 246. It turns out that 98 percent of the keys will generate 13 swaps
or less. Since this leaves only 1/50 keys left, we can do an exhaustive search of these if the
above attack fails, leaving only a 250 attack, which is still better than DES.

Therefore, using conditional characteristics, we have proved that the security of RDES is
always less than DES, and in many cases, is significantly worse.

7.11 Higher-Order Differentials

Differential cryptanalysis is the study of normal differentials, where we have two texts, X1
and X2, and we use information about the difference of those two texts:

ΩX = X1 ⊕ X2

This difference allows us to analyze how the cipher changes.
There was some effort to start arming ciphers to become immune to these differential

attacks, for example, by using S-boxes with more uniform differences, as well as other tech-
niques [11, 16].

One of the responses to this trend is the concept of higher-order differentials [10, 12]. If
we have a difference of plaintexts, for example, why stop at just this one difference? Why not
have a difference of the difference of the plaintexts, and see if we can use this to determine
any information? This would be a second-order differential. We can also have third-order,
fourth-order, and so forth.

More formally, suppose that we have a differential, ΩX, and another differential, Ω′X. We
can define a second-order input differential, say, Ω2

X, where

Ω2
X = ΩX ⊕Ω′X

This requires us to have four ciphertexts, say, X1, X2, X3, and X4, such that the first-order
differentials are

ΩX = X1 ⊕ X2, Ω′X = X1 ⊕ X3, Ω′X = X2 ⊕ X4

Then the second-order input differential is

Ω2
X = ΩX ⊕Ω′X
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However, the output differential (of F, which could be a round function, or one or more
rounds) is normally referred to as the second-order differential. For the first-order output
differentials, we would then have

ΩY = F(X1)⊕ F(X2), Ω′Y = F(X1)⊕ F(X3) = F(X2)⊕ F(X4)

And for the second-order output differential:

Ω2
Y = ΩY ⊕Ω′Y

This would give us the second-order characteristic:

(Ω2
X ⇒2 Ω2

Y)

I use the symbol “⇒2” to represent that this is not an ordinary characteristic.
This process can be extended further to create higher-order differentials. Formally, for

these, we can use a slightly different notation from Reference [10], as the above notation can
quickly become a bit cumbersome. Furthermore, the above notation applies only to standard
binary ciphers. For ones that take place, for example, in finite fields, we need a slightly
different notation, since the operation to take the difference might be different from the one
to add a difference.

Let a first-order differential of the output of a round function F of an input point X be
denoted

∆A1 F(X) = F(X + A1)− F(X)

where A1 is the differential of the input. For a second-order differential, we have

∆A1,A2(F(X1)) = ∆A2(∆A1(F(X)))

We’ll expand this so it is a little clearer:

∆A2(∆A1(F(X)))

= ∆A2(F(X + A1)− F(X))

= F(X + A1 + A2)− F(X + A1)− F(X + A2) + F(X)

This technique of higher-order differentials can be very useful. In Reference [10], Knudsen
shows that the round function f (x + k)2 mod p, where p is prime (and has a block size of
twice the number of bits in p), has no useful first-order differentials. However, if we use
second-order differentials, we can break the round function very easily.

7.12 Truncated Differentials

In standard differential cryptanalysis, we take a fixed difference in the input and rely on this
difference producing a chain reaction of a step-by-step series of differences, which eventually
trickle down to a point that we can measure. When we measure at this point, we are looking
for an exact difference between two ciphertexts: We count these exact differences, and ignore
any plaintext–ciphertexts pairs that do not have this difference in the ciphertext.

To be more specific, in the above standard differential attacks, we would check to see if
there was a difference by XORing the two values and checking the value of the output. If
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it matched what we expected, then it’s a hit. Otherwise, it’s not, even if all of the bits we
expected to be flipped were, but some extra bits were also flipped.

The concept of truncated differentials relaxes the constraint that we need to look for the
entire difference to be exactly what we use (in the input difference) or what we predict (in
the output difference). If we have a normal characteristic, with two differentials:

(ΩX ⇒ ΩY)

then we have a truncated differential:

(Ω′X ⇒ ΩY)

where Ω′X and Ω′Y, respectively, represent subsets of the differentials ΩX and ΩY. The term
subsets here means that just some (or possibly all) of the bits that are different in characteristics
will be different in the truncated differential.

For example, DES itself has known truncated round characteristics of probability 1.

Knudsen in Reference [10] gives a simple attack on a five-round Feistel cipher with an
n-bit round function (and therefore, a 2n-bit block size). Let the Feistel round function be F.
Assume we have a non-zero input truncated differential Ωa, using only some of the bits:

1. Let T be a table, potentially up to size 2n, of all zeros.

2. For every input value of x (all 2n of them), calculate x + Ωa, and set the entry corre-
sponding to the output differential equal to 1, that is, set

T [F(x)⊕ F(x⊕Ωa)] = 1

This way, all possible output differentials corresponding to the truncated differential
are marked and known.

3. Choose a plaintext at random, P1. Calculate P2 = P1⊕ (Ωa ‖ 0), that is, the right half of
the difference is 0, and the left half is Ωa.

4. Calculate the encryptions of P1 and P2, setting them to C1 and C2, respectively.

5. For every value of the fifth round key, k5, do the following:

(a) Decrypt one round of C1 and C2 using k5, and save these intermediate ciphertexts
as D1 and D2.

(b) For every value of the fourth round key, k4, do the following:

i. Calculate t1 = F(DR
1 ⊕ k4) and t2 = F(DR

2 ⊕ k4), where the R represents the
right half of the D-values.

ii. If T[t1 ⊕ t2 ⊕ DL
1 ⊕ DL

2 ] is greater than 0, then output the values of k4 and k5
(where the L represents the left half of the D-values). Here, we are measuring
if the truncated differential was seen.

This will generate a list of keys proportional to the number of key bits in the truncated
differential. Repeating this a sufficient number of times, we will have only a single set of keys
come out each time.
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We can use this same attack on any number of rounds by doing the exact same analysis,
except for the first three rounds. Naturally, with each application, we have to do more work
and will have less precision.

Truncated differential analysis is a potentially powerful technique. It has been done on
the Twofish Algorithm [18] in Reference [15], although it has not been used in a successful
attack as yet [17].

7.13 Impossible Differentials

Impossible differentials were used successfully to cryptanalyze most of Skipjack [7] (31 out
of 32 rounds) by Biham, Biryukov, and Shamir [5].

The idea is fairly simple: Instead of looking for outcomes that are as highly probable as
possible, we look for events that cannot occur in the ciphertext. This means that, if we have a
candidate key (or set of key bits) that produces a differential with a probability of 0, then that
candidate is invalid. If we invalidate enough of the keys, then we will be left with a number
reasonable enough to work with.

As Biham et al. [5] point out, events that should be impossible have been historically used
in other events [6]. For example, with a German Enigma machine, it was not possible for any
plaintext character to be encrypted to itself. Therefore, any potential solution of a ciphertext
must not have a character of plaintext be the same as the corresponding character in the
ciphertext.

The particular attack Biham et al. explain is a miss-in-the-middle attack on Skipjack. If we
feed an input differential into round 5 of (0, a, 0, 0) [into (w5, w6, w7, w8)], then we can check
for an impossible output differential in (the output of) round 28: (b, 0, 0, 0). We will write this
impossible differential as

(0, a, 0, 0) 6⇒ (b, 0, 0, 0)

This differential is impossible if a and b are both not 0. (The rounds are numbered from 1 to
32.)

This is a miss-in-the-middle attack because, if we analyze the differentials from round
5 and round 28, we can trace them all the way to the output of round 16 (or, equivalently,
the input of round 17); two effects of each differential meet: The input differential says that
the round value should be (c, d, e, 0), while the output differential says that the round value
should be ( f , g, 0, h). Specifically, e and h cannot be 0, and therefore there is a contradiction.
Figure 7-2 graphically depicts the impossible differential attack.

For the exact details of the full attack, including complete details on a key recovery attack,
see Reference [5]. However, I’ll outline the attack below.

This technique can be used to derive a key in the following way. We use the above
differential [(0, a, 0, 0) 6⇒ (b, 0, 0, 0)] to ferret out all of the invalid subkeys. We launch an
attack very similar to a standard differential attack, where we expect to predict the key by
using the plaintext–ciphertext to test a differential as above. However, instead of selecting
the subkey with the most hits, we instead eliminate any key that ever shows an impossible
difference. Repeating this enough times, we will eventually be left with a single candidate
subkey. Repeat this a sufficient number of times for different subkeys, and we will eventually
be left with a reasonable number of key to check through brute force. Performing a 25-round
attack can recover the full key in about 227 steps. However, when we hit 26 rounds, this
becomes 249 steps and gets worse from there.
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Figure 7-2 A graphical depiction of the impossible differential attack on Skipjack,
based on a diagram from Reference [5]. The rounds have been “unrolled” from the
shift register mechanism, allowing us to more easily see the mechanism. We can
see the differentials missing in the zero, as one side predicts a zero, and the other
side predicts a non-zero intermediate.
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The above key recovery attack, unfortunately, only seems to work for up to about 26
rounds of the full 32-round Skipjack. With 31 rounds, Biham et al. [5] instead found that
they would have to check every single key. Luckily, checking every single key does not
require performing the complete encryption or decryption: It can be limited to a handful of
computations of the G-function. Since a full encryption works by using several G-function
computations, as long as we keep the number of G computations down below the amount
required for a full encryption, we are still doing less work than would be required on a
normal exhaustive attack. The authors predict about 278 steps, with 264 bits of memory (2,048
petabytes). This is still faster than an exhaustive attack, which would require 280 steps.

One of the most important contributions of the concept of impossible differentials is that
the normal method of “proving” cipher secure against differential cryptanalysis — that by
creating a very low upper bound on probabilities of differentials in the components — is
flawed. If there are a sufficient number of zero or low-probability differentials, then the
impossible differential attack can be carried out.

Furthermore, this same attack can be applied with conditional characteristics and differ-
entials, as well as linear cryptanalysis.

7.14 Boomerang Attack

So far, we have been focusing almost entirely on top-down approaches to cryptanalysis: Our
attacks work by taking information about the plaintext, and deriving some feature of the
ciphertext that we will test. How often the test succeeds gives us a likelihood that a key is
correct.

The above attack with impossible differentials, as well as the previously discussed meet-
in-the-middle attack, shows us that this view may be missing out on some advantages to
working both ends at once. Linear cryptanalysis even uses some of this symmetry to help
derive more key bits.

The boomerang attack is another differential meet-in-the-middle attack [20].
The basic premise uses four pairs of plaintexts and their associated ciphertexts:

(P0, C0), (P1, C1), (Q0, D0), (Q1, D1)

Using the premises of Reference [20], let’s break the encryption operation (E) into two
subparts: E0 (the first half of the encryption) and E1 (the second half of the encryption). For
example:

C0 = E(P0) = E1(E0(P0))

I’ll denote the inverse operations of E0 and E1, as in, the decryption operations, as E−1
0 and

E−1
1 , respectively. From the above, we would also have

P0 = E−1
0 (E−1

1 (C0))

Here, we will have to develop two characteristics, one for the first half of the encryption,
E0, and one for the second half’s decryption, E−1

1 :

E0 : (Ω⇒ Ω∗)

E−1
1 : (ω ⇒ ω∗)
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Figure 7-3 Derivation of the boomerang differential P0 ⊕ P1 = Ω leading to Q0 ⊕
Q1 = Ω, based on a diagram in Reference [20]. (Light gray lines) XORs; (dark
gray lines) how the differentials propagate from the Ps to the Qs; (black lines)
encryption.

Note that the E−1
1 characteristic works from the ciphertext to the intermediate ciphertext

(outside inwards). The differentials are used in the following relations:

P0 ⊕ P1 = Ω
C0 ⊕ D0 = ω

C1 ⊕ D1 = ω

Using these two characteristics, we can then derive a new characteristic for the intermediate
encryption of Q0 and Q1:

E0(Q0)⊕ E0(Q1)

= E0(Q0)⊕ E0(Q1)⊕ (E0(P0)⊕ E0(P0))⊕ (E0(P1)⊕ E0(P1))

= E−1
1 (D0)⊕ E−1

1 (D1)⊕ E−1
1 (C0)⊕ E0(P0)⊕ E−1

1 (C1)⊕ E0(P1)

= (E0(P0)⊕ E0(P1))⊕ (E−1
1 (C0)⊕ E−1

1 (D0))⊕ (E−1
1 (C1)⊕ E−1

1 (D1))

= Ω∗ ⊕ω∗ ⊕ω∗

= Ω∗

Hence, we have derived a new characteristic for the Q values:

E−1
0 : (Ω∗ ⇒ Ω)

This characteristic can then be measured by calculating Q0 ⊕Q1 = Ω. Figure 7-3 shows a
graphical representation of how this characteristic occurs.

From the diagram and the derivation above, we can see why this is called the boomerang
attack: If we construct the differentials correctly, the differential Ω will come back and hit us
in Q0 ⊕Q1.

We construct the boomerang differential by taking a seed plaintext P0 with our Ω differ-
ential and creating P1 = P0 ⊕ Ω. We then encrypt P0 and P1 to obtain C0 and C1, respec-
tively. Next, we calculate new ciphertexts with our ω differential, so that D0 = C0 ⊕ ω and
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D1 = C1⊕ω. We then decrypt D0 and D1 to obtain Q0 and Q1. Some percentage of the time,
the moons will align and the differentials will all line up, allowing us to measure to see if
Q0 ⊕Q1 = Ω. When all four differentials hold, we refer to this as a right quartet.

What is the significance of this attack? Well, many algorithms have been deemed to be
“secure” against differential cryptanalysis because of the lack of any good characteristics on
the full cipher. Normally, as the number of rounds increases, the probability of the differential
decreases, thereby requiring more and more plaintext–ciphertext pairs.

The above boomerang attack lets us develop an attack using only the characteristic for
the first half of the cipher, bypassing the latter half. If sufficiently strong characteristics exist,
then we have a good attack. We use the characteristics just as before to derive the key. With
the characteristic properly set in the final (and first) rounds, we can brute-force the keys that
affect the differential, measure it, and select the most likely candidate key bits.

After this first layer is stripped away, we can continue developing characteristics to get
more key bits, or just perform an exhaustive search on the remaining key bits.

Wagner [20] uses exactly this premise against the COCONUT98 algorithm [19]. CO-
CONUT98 has a 256-bit key and was developed specifically to defeat differential cryptanaly-
sis by having no useful characteristics. Despite this, COCONUT98’s key can be derived using
the boomerang attack with 216 chosen plaintext–ciphertext sets, with 241 offline computations
(equivalent to 238 encryptions, according to Reference [20]).

In addition to its attack on COCONUT98, Reference [20] also mounts an incredibly suc-
cessful attack against FEAL (Section 4.7) and Khufu, a 64-bit block cipher with a 512-bit key
[14].

7.15 Interpolation Attack

Many of these differential techniques are extensions of standard, continuous techniques of
calculus, such as the derivative. As a matter of fact, differentials are sometimes referred to as
derivatives. The primary difference is that, instead of applying the techniques to continuous
spaces, like real or complex numbers, we are applying the techniques to discrete spaces — in
our case, integers between 0 and 2n.

Another technique many learn is interpolation: If we wish to find a line between two
points, or a parabola between three, or, in general, a polynomial of degree n− 1 that passes
between n points, there is a simple formula to calculate this polynomial. These formulas can
be used to analyze the relationship between various points or to find additional points lying
in between points.

For example, for a simple line between two points (x0, y0) and (x1, y1) we can see that the
following line includes both points:

p(x) = y0 ×
(

x− x1

x0 − x1

)
+ y1 ×

(
x− x0

x1 − x0

)
If we plug in x0, we get y0, and if we plug in x1, we get y1. The function is linear because it
contains only the variable x.

In the general case, for points (xi, yi), for i = 1, . . . , n, our interpolating polynomial, p(x),
is given by

p(x) =
n

∑
i=1

yi ∏
1≤j≤n,j 6=i

(
x− xj

xi − xj

)
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This is merely an extension of our previous case to produce a polynomial of degree n − 1.
This is called the Lagrange interpolating polynomial.

This technique can also be applied to the discrete world of bits and bytes, as shown
by Jakobsen and Knudsen [8]. We simply apply the above definitions to discrete functions,
where the x- and y-values will be plaintext and their associated ciphertexts, respectively.

We can apply this technique by noting that 32-bit XOR operations are identical to algebraic
addition in the finite field GF(232) (since it has characteristic 2, i.e., 2 is equivalent to 0, so
that 1 + 1 = 0).

Constructing this polynomial will not immediately yield the key, however. Given suf-
ficient pairs, it can actually yield a polynomial that emulates the encryption function: It
produces valid ciphertexts from given plaintexts.

To actually get key bits, we instead try find a polynomial for the plaintext and the next-to-
last round of ciphertext. Similar to the way we have done before, we decrypt some portion of
the last round by guessing the last round key. When we have done this for a sufficient number
of plaintext–ciphertext pairs, we will have enough plaintext and intermediate ciphertext pairs
to attempt to construct a polynomial. We check the polynomial against another value that
wasn’t used in the construction to test it. If the polynomial produces the correct result, then
we have guessed the key bits.

The interpolating attack is a bit academic in nature, but it provides an interesting avenue
of attack. For certain ciphers that provably secure against traditional differential cryptanaly-
sis, the interpolating attack produces a very reasonable method for deriving the key, as shown
in Reference [8].

7.16 Related-Key Attack

Finally, we want to look at a completely different way of viewing differential cryptanalysis.
In the previous sections, we analyzed ciphers by examining how differences in the plaintexts
and ciphertexts propagate to determine key bits. This was accomplished through the use of
chosen-plaintext attacks.

One avenue unexplored is that of attacking the key itself. After all, we have considered
the key to be out-of-bounds for modifications. It hasn’t been part of our model to modify it,
since it is what we are trying to derive. Furthermore, doesn’t the ability to change the key
automatically mean that we know the value of it?

Actually, no. As Kelsey, Schneier, and Wagner [9] point out, many key exchange protocols
leave themselves vulnerable in two ways. The first way is that they do not check the integrity
of the key before they start using it to encrypt plaintext into ciphertext encrypted — meaning
that, immediately after exchanging the keys, they immediately encrypt some plaintext and
send the ciphertext to the other party.

Secondly, many key exchange protocols use simple XOR structures to pass along the key.
For example, assume that there is a pre-shared secret key, Km. A new session key may be
generated by sending a message:

(M, EKm(M)⊕ Ks)

This two-part message will hide the actual value of the key. However, if we have the
ability to modify the message in transit, then we could corrupt the key the first time around
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with a known difference. Now, one party will send a message encrypted with one key, and
the other will send a message encrypted with the key XORed with a fixed, chosen difference.

Typically, we also address this attack as a chosen plaintext, so that both parties would
attempt to encrypt the same plaintext with the XORed keys.

Owing to the difficulty of achieving such an attack, this scenario has often been disre-
garded. However, the above key-exchange scenario should provide some conjecture that the
above attack is very possible.

Naturally, the XOR difference will have to be significant, usually to exploit a weakness
in the key-scheduling algorithm. Attacks that rely on such weaknesses are called related-
key attacks, since the attack relies on so-called “related keys” in the schedule. Indeed, many
ciphers use schedules in which key bits are copied or have a linear relationship to many other
bits.

7.16.1 Related-Key Attack on GOST
Sometimes the related-key attack can be carried out with a normal differential attack. In
Reference [9], the authors exploit a key scheduling weakness in the GOST 28147-89 cipher, a
Soviet cryptosystem [1]. The key schedule they specify takes a 256-bit key and breaks it into
eight 32-bit subkeys, K0, . . . K7, generating subkeys (ski) for use in the 32 rounds by

ski =

{
Ki mod 8 if i < 24
K(7−i) mod 8 else

We can use this key schedule in a clever manner.
Say that we have an interesting differential for the plaintext on this algorithm, Ω. Since

the keys (in most ciphers, actually) are directly XORed in at some point, we should be able to
choose a related key to the original that will counteract the Ω for the first round. This could
be done simply by taking K0 = K0 ⊕ ∆, for some appropriate value of ∆.

Note that the subkeys for the next seven rounds (i = 1, . . . , 7) don’t rely on K0. This
means that the difference for each of these rounds from the original plaintext is zero! The
differences will then start with the eighth round. In essence, we skipped the first eight rounds
of the cipher and can instead mount a much simpler 24-round attack.

7.16.2 Related-Key Attack on 3DES
A very interesting use of a related-key attack is on 3DES, using three separate keys [9]. We
recall that 3DES uses the standard DES encryption function three times in succession, each
time with a different key. (The decryption, naturally, decrypts with the keys in the exact
opposite fashion.) This allows us to virtually triple the total key space, while not changing
the underlying structure of DES at all.

Assume that we have a DES encryption of a plaintext P to a ciphertext C, using keys
Ka, Kb, and Kc as follows. Let the E-function represent DES encryption, and the D-function
represent DES decryption. Then,

C = EKc(DKb(EKa(P)))

Now, assume that we have a related key, with K′a = Ka ⊕ ∆. We select to have the original
C decrypted to give us a new plaintext, P′, or

P′ = DKc(EKb(DK′a(C)))
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Note that the decryption to P is

P = DKc(EKb(DKa(C)))

That is, the decryption to P and P′ differs only in the last step, allowing us to write

P′ = DK′a(EKa(P))

We can then treat this as a known-plaintext attack and attack it via an exhaustive search, for
256 work, deriving Ka in the process.

Once we have Ka, we can then obtain EKa(P), allowing us to look at it, along with C, as a
known plaintext–ciphertext pair of double DES. We may recall that double DES is susceptible
to a meet-in-the-middle attack with 257 work.

With a related-key attack, we have then broken 3DES to be no better than normal DES.
Note, however, that this works only when all three keys are independent. The most com-
mon form of 3DES, with the first and third keys the same, is immune to this attack, as the
differential would carry into the first and last steps of both encryption and decryption.

Finally, the authors of Reference [9] give some guidance on how to avoid related-key
attacks.

First, avoid using key-exchange algorithms that do not have key integrity; always check
the key before using it blindly to encrypt something and broadcasting it.

Second, making efforts to not derive round keys in such linear manners will go a long way.
The authors make a very good suggestion of running the key first through a cryptographic
hash function, such as SHA-1, and then using it to derive a key schedule. Any sufficiently
strong hash function will obliterate any structures that may have been artificially induced,
preventing them from meaningfully modifying the ciphertext.

7.17 Summary

In this chapter, I demonstrated many modern differential attacks against modern ciphers.
The standard differential attack has been extended and studied extensively over the past two
decades and continues to be in conferences and papers every year.

There is always more to learn in the field of cryptanalysis. This book only covered some
of the more popular and influential topics in the field. To the reader wanting to learn even
more about the field, you can look through the archives and current issues of The Journal
of Cryptology, Cryptologia, the proceedings of conferences such as CRYPTO, EUROCRYPT,
ASIACRYPT, Fast Software Encryption, and many others.

Again, we must reiterate, though: The best way to become a better cryptanalyst is to
practice, practice, practice!
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Exercises

Exercise 1. Change the S-box and P-box of the Easy1 cipher to randomly generated values.
Use the analysis in this chapter to create a differential attack on this for three rounds.

Exercise 2. Use the basic one-round version of the cipher from the previous exercise as a
round function to a simple Feistel cipher. Use a simple key schedule, such as using the same
36-bit key every round.

Use differential cryptanalysis to break this Feistel cipher for eight rounds. Give analysis
for how many plaintext–ciphertext pairs this will require.

Exercise 3. Perform a differential analysis of the S-boxes of DES. Discuss your results.

Exercise 4. Perform a differential analysis of AES. How successful would you guess a
standard differential attack against AES might be based on this analysis?

Exercise 5. Attempt an impossible cryptanalysis attack against the cipher you created in
Exercise 1. Try again with the Feistel cipher in Exercise 2.

Exercise 6. Mount a boomerang attack against the cipher you created in Exercise 2, but
extend the number of rounds to 16.
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